Simplify expression $e^ipi/3(sqrt2e^ipi /4 -1)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Problem



Simplify expression $e^ipi/3(sqrt2e^ipi /4 -1)$



Attempt to solve



$$= sqrt2e^i 7pi/12-e^i pi / 3 = e^ifrac56pi$$



I can't seem to find how this expression is $e^ifrac56pi$ ?



I would like the final result be in polar form $re^itheta$










share|cite|improve this question

























    up vote
    0
    down vote

    favorite
    1












    Problem



    Simplify expression $e^ipi/3(sqrt2e^ipi /4 -1)$



    Attempt to solve



    $$= sqrt2e^i 7pi/12-e^i pi / 3 = e^ifrac56pi$$



    I can't seem to find how this expression is $e^ifrac56pi$ ?



    I would like the final result be in polar form $re^itheta$










    share|cite|improve this question























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Problem



      Simplify expression $e^ipi/3(sqrt2e^ipi /4 -1)$



      Attempt to solve



      $$= sqrt2e^i 7pi/12-e^i pi / 3 = e^ifrac56pi$$



      I can't seem to find how this expression is $e^ifrac56pi$ ?



      I would like the final result be in polar form $re^itheta$










      share|cite|improve this question













      Problem



      Simplify expression $e^ipi/3(sqrt2e^ipi /4 -1)$



      Attempt to solve



      $$= sqrt2e^i 7pi/12-e^i pi / 3 = e^ifrac56pi$$



      I can't seem to find how this expression is $e^ifrac56pi$ ?



      I would like the final result be in polar form $re^itheta$







      complex-numbers






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 2 at 9:55









      Tuki

      637316




      637316




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          It might be slightly simpler to notice that
          $$ sqrt2e^ipi/4-1 = sqrt2left(frac1sqrt2+fracisqrt2right)-1=i=e^ipi/2, $$
          so
          $$ e^ipi/3(sqrt2e^ipi/4-1)=e^ipi/3e^ipi/2=e^i5pi/6. $$






          share|cite|improve this answer



























            up vote
            1
            down vote













            One may write trigonometric form
            beginalign
            e^ifracpi3(sqrt2e^ifracpi4 -1)
            &= (cosdfracpi3+isindfracpi3)left(sqrt2(cosdfracpi4+isindfracpi4)-1right) \
            &= left(dfrac12+idfracsqrt32right)left(1+i-1right) \
            &= dfrac-sqrt32+idfrac12 \
            &= e^frac56pi i
            endalign






            share|cite|improve this answer




















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902547%2fsimplify-expression-ei-pi-3-sqrt2ei-pi-4-1%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              3
              down vote



              accepted










              It might be slightly simpler to notice that
              $$ sqrt2e^ipi/4-1 = sqrt2left(frac1sqrt2+fracisqrt2right)-1=i=e^ipi/2, $$
              so
              $$ e^ipi/3(sqrt2e^ipi/4-1)=e^ipi/3e^ipi/2=e^i5pi/6. $$






              share|cite|improve this answer
























                up vote
                3
                down vote



                accepted










                It might be slightly simpler to notice that
                $$ sqrt2e^ipi/4-1 = sqrt2left(frac1sqrt2+fracisqrt2right)-1=i=e^ipi/2, $$
                so
                $$ e^ipi/3(sqrt2e^ipi/4-1)=e^ipi/3e^ipi/2=e^i5pi/6. $$






                share|cite|improve this answer






















                  up vote
                  3
                  down vote



                  accepted







                  up vote
                  3
                  down vote



                  accepted






                  It might be slightly simpler to notice that
                  $$ sqrt2e^ipi/4-1 = sqrt2left(frac1sqrt2+fracisqrt2right)-1=i=e^ipi/2, $$
                  so
                  $$ e^ipi/3(sqrt2e^ipi/4-1)=e^ipi/3e^ipi/2=e^i5pi/6. $$






                  share|cite|improve this answer












                  It might be slightly simpler to notice that
                  $$ sqrt2e^ipi/4-1 = sqrt2left(frac1sqrt2+fracisqrt2right)-1=i=e^ipi/2, $$
                  so
                  $$ e^ipi/3(sqrt2e^ipi/4-1)=e^ipi/3e^ipi/2=e^i5pi/6. $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 2 at 9:59









                  Sobi

                  2,843417




                  2,843417




















                      up vote
                      1
                      down vote













                      One may write trigonometric form
                      beginalign
                      e^ifracpi3(sqrt2e^ifracpi4 -1)
                      &= (cosdfracpi3+isindfracpi3)left(sqrt2(cosdfracpi4+isindfracpi4)-1right) \
                      &= left(dfrac12+idfracsqrt32right)left(1+i-1right) \
                      &= dfrac-sqrt32+idfrac12 \
                      &= e^frac56pi i
                      endalign






                      share|cite|improve this answer
























                        up vote
                        1
                        down vote













                        One may write trigonometric form
                        beginalign
                        e^ifracpi3(sqrt2e^ifracpi4 -1)
                        &= (cosdfracpi3+isindfracpi3)left(sqrt2(cosdfracpi4+isindfracpi4)-1right) \
                        &= left(dfrac12+idfracsqrt32right)left(1+i-1right) \
                        &= dfrac-sqrt32+idfrac12 \
                        &= e^frac56pi i
                        endalign






                        share|cite|improve this answer






















                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          One may write trigonometric form
                          beginalign
                          e^ifracpi3(sqrt2e^ifracpi4 -1)
                          &= (cosdfracpi3+isindfracpi3)left(sqrt2(cosdfracpi4+isindfracpi4)-1right) \
                          &= left(dfrac12+idfracsqrt32right)left(1+i-1right) \
                          &= dfrac-sqrt32+idfrac12 \
                          &= e^frac56pi i
                          endalign






                          share|cite|improve this answer












                          One may write trigonometric form
                          beginalign
                          e^ifracpi3(sqrt2e^ifracpi4 -1)
                          &= (cosdfracpi3+isindfracpi3)left(sqrt2(cosdfracpi4+isindfracpi4)-1right) \
                          &= left(dfrac12+idfracsqrt32right)left(1+i-1right) \
                          &= dfrac-sqrt32+idfrac12 \
                          &= e^frac56pi i
                          endalign







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Sep 2 at 10:15









                          Nosrati

                          22.1k61747




                          22.1k61747



























                               

                              draft saved


                              draft discarded















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902547%2fsimplify-expression-ei-pi-3-sqrt2ei-pi-4-1%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              這個網誌中的熱門文章

                              How to combine Bézier curves to a surface?

                              Mutual Information Always Non-negative

                              Why am i infinitely getting the same tweet with the Twitter Search API?