Differentiation of a Complicated Integration

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$



I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.










share|cite|improve this question





















  • Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
    – StubbornAtom
    Sep 2 at 12:35














up vote
1
down vote

favorite
1












Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$



I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.










share|cite|improve this question





















  • Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
    – StubbornAtom
    Sep 2 at 12:35












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$



I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.










share|cite|improve this question













Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$



I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.







calculus integration derivatives statistical-inference






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 2 at 12:09









Stat_prob_001

283112




283112











  • Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
    – StubbornAtom
    Sep 2 at 12:35
















  • Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
    – StubbornAtom
    Sep 2 at 12:35















Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
– StubbornAtom
Sep 2 at 12:35




Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
– StubbornAtom
Sep 2 at 12:35















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902653%2fdifferentiation-of-a-complicated-integration%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902653%2fdifferentiation-of-a-complicated-integration%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

Why am i infinitely getting the same tweet with the Twitter Search API?

Amount of Number Combinations to Reach a Sum of 10 With Integers 1-9 Using 2 or More Integers [closed]