Differentiation of a Complicated Integration
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$
I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.
calculus integration derivatives statistical-inference
add a comment |Â
up vote
1
down vote
favorite
Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$
I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.
calculus integration derivatives statistical-inference
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$
I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.
calculus integration derivatives statistical-inference
Let, $h$ is differentiable function. $theta_1inmathbbR$, $theta_2>0$ $$F(theta_1,theta_2) = int_theta_1-theta_2^theta_1+theta_2int_theta_1-theta_2^yn(n-1)frac(y-x)^n-2(2theta_2)^nh(x,y)dxdy$$
I need to find $dfracpartial^2 Fpartial theta_1partial theta_2$. I know Leibniz Rule for these type of cases. Is there any easy way to derive this? Thanks.
calculus integration derivatives statistical-inference
calculus integration derivatives statistical-inference
asked Sep 2 at 12:09
Stat_prob_001
283112
283112
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35
add a comment |Â
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902653%2fdifferentiation-of-a-complicated-integration%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Using Fubini's theorem, we can write the double integral as iterated integrals. Then, beginalign fracpartial Fpartialtheta_2&=fracn(n-1)2^nfracpartialpartialtheta_2leftint_theta_1-theta_2^y,dxrightleftint_theta_1-theta_2^theta_1+theta_2frac(y-x)^n-2theta_2^nh(x,y),dyright \&=fracn(n-1)2^nfracpartialpartialtheta_2frac(y-theta_1+theta_2)theta_2^nleftint_theta_1-theta_2^theta_1+theta_2(y-x)^n-2h(x,y),dyright endalign Use the product rule for differentiation. Leibniz rule applies as usual.
â StubbornAtom
Sep 2 at 12:35