outer in terms of basis

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $v_1,v_2,v_3,...,v_n$ be an orthonormal basis of $V$. Show that for any vectors $w$ and $z$ of $V$:



$langle w,z rangle=sum_k=1^n langle w,v_kranglelangle v_k,zrangle$










share|cite|improve this question























  • Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
    – Xiangxiang Xu
    Sep 2 at 9:09











  • @XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
    – mathamity
    Sep 2 at 9:20











  • Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
    – Xiangxiang Xu
    Sep 2 at 9:32















up vote
1
down vote

favorite












Let $v_1,v_2,v_3,...,v_n$ be an orthonormal basis of $V$. Show that for any vectors $w$ and $z$ of $V$:



$langle w,z rangle=sum_k=1^n langle w,v_kranglelangle v_k,zrangle$










share|cite|improve this question























  • Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
    – Xiangxiang Xu
    Sep 2 at 9:09











  • @XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
    – mathamity
    Sep 2 at 9:20











  • Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
    – Xiangxiang Xu
    Sep 2 at 9:32













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $v_1,v_2,v_3,...,v_n$ be an orthonormal basis of $V$. Show that for any vectors $w$ and $z$ of $V$:



$langle w,z rangle=sum_k=1^n langle w,v_kranglelangle v_k,zrangle$










share|cite|improve this question















Let $v_1,v_2,v_3,...,v_n$ be an orthonormal basis of $V$. Show that for any vectors $w$ and $z$ of $V$:



$langle w,z rangle=sum_k=1^n langle w,v_kranglelangle v_k,zrangle$







inner-product-space






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 12 at 8:35

























asked Sep 2 at 9:01









mathamity

639




639











  • Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
    – Xiangxiang Xu
    Sep 2 at 9:09











  • @XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
    – mathamity
    Sep 2 at 9:20











  • Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
    – Xiangxiang Xu
    Sep 2 at 9:32

















  • Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
    – Xiangxiang Xu
    Sep 2 at 9:09











  • @XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
    – mathamity
    Sep 2 at 9:20











  • Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
    – Xiangxiang Xu
    Sep 2 at 9:32
















Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
– Xiangxiang Xu
Sep 2 at 9:09





Hint: try to prove that $w = sum_i = 1^n langle w, v_irangle cdot v_i $.
– Xiangxiang Xu
Sep 2 at 9:09













@XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
– mathamity
Sep 2 at 9:20





@XiangxiangXu $w=sum_k=1^na_kv_k$. If we take inner product with $v_k$ on both sides, we get, $a_k=langle w,v_k rangle$
– mathamity
Sep 2 at 9:20













Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
– Xiangxiang Xu
Sep 2 at 9:32





Then suppose $w = sum_i = 1^n a_i v_i, z = sum_i = 1^n b_i v_i$, can you show that $langle w, z rangle = sum_i = 1^n a_i b_i$?
– Xiangxiang Xu
Sep 2 at 9:32











2 Answers
2






active

oldest

votes

















up vote
0
down vote













We have that



  • $w=sum_i=1^n a_i v_i$

  • $z=sum_j=1^n b_j v_j$

then



$$langle w,z rangle=langlesum_i=1^n a_i v_i,sum_j=1^n b_j v_j
rangle=sum_k=1^n a_kb_k=sum_k=1^n a_kv_k^Tcdot v_kb_k=
sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






share|cite|improve this answer






















  • you have used dot product definition. can we prove using only the generalised inner product definition?
    – mathamity
    Sep 2 at 9:23










  • @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
    – gimusi
    Sep 2 at 9:25

















up vote
0
down vote













Since $v_1, ldots, v_n$ is an orthonormal basis, we have $langle v_k, v_jrangle = delta_kj$ and $x = sum_i=1^n langle x, v_irangle v_i$ for all $x in V$.



Therefore
$$langle w,z rangle= leftlangle sum_k=1^n langle w, v_krangle v_k, sum_j=1^n langle z, v_jrangle v_krightrangle = sum_k=1^nsum_j=1^n langle w,v_kranglelangle v_j,zrangle underbracelangle v_k, v_jrangle_delta_kj = sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902512%2fouter-in-terms-of-basis%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    We have that



    • $w=sum_i=1^n a_i v_i$

    • $z=sum_j=1^n b_j v_j$

    then



    $$langle w,z rangle=langlesum_i=1^n a_i v_i,sum_j=1^n b_j v_j
    rangle=sum_k=1^n a_kb_k=sum_k=1^n a_kv_k^Tcdot v_kb_k=
    sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






    share|cite|improve this answer






















    • you have used dot product definition. can we prove using only the generalised inner product definition?
      – mathamity
      Sep 2 at 9:23










    • @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
      – gimusi
      Sep 2 at 9:25














    up vote
    0
    down vote













    We have that



    • $w=sum_i=1^n a_i v_i$

    • $z=sum_j=1^n b_j v_j$

    then



    $$langle w,z rangle=langlesum_i=1^n a_i v_i,sum_j=1^n b_j v_j
    rangle=sum_k=1^n a_kb_k=sum_k=1^n a_kv_k^Tcdot v_kb_k=
    sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






    share|cite|improve this answer






















    • you have used dot product definition. can we prove using only the generalised inner product definition?
      – mathamity
      Sep 2 at 9:23










    • @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
      – gimusi
      Sep 2 at 9:25












    up vote
    0
    down vote










    up vote
    0
    down vote









    We have that



    • $w=sum_i=1^n a_i v_i$

    • $z=sum_j=1^n b_j v_j$

    then



    $$langle w,z rangle=langlesum_i=1^n a_i v_i,sum_j=1^n b_j v_j
    rangle=sum_k=1^n a_kb_k=sum_k=1^n a_kv_k^Tcdot v_kb_k=
    sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






    share|cite|improve this answer














    We have that



    • $w=sum_i=1^n a_i v_i$

    • $z=sum_j=1^n b_j v_j$

    then



    $$langle w,z rangle=langlesum_i=1^n a_i v_i,sum_j=1^n b_j v_j
    rangle=sum_k=1^n a_kb_k=sum_k=1^n a_kv_k^Tcdot v_kb_k=
    sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Sep 2 at 9:25

























    answered Sep 2 at 9:20









    gimusi

    72.2k73888




    72.2k73888











    • you have used dot product definition. can we prove using only the generalised inner product definition?
      – mathamity
      Sep 2 at 9:23










    • @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
      – gimusi
      Sep 2 at 9:25
















    • you have used dot product definition. can we prove using only the generalised inner product definition?
      – mathamity
      Sep 2 at 9:23










    • @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
      – gimusi
      Sep 2 at 9:25















    you have used dot product definition. can we prove using only the generalised inner product definition?
    – mathamity
    Sep 2 at 9:23




    you have used dot product definition. can we prove using only the generalised inner product definition?
    – mathamity
    Sep 2 at 9:23












    @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
    – gimusi
    Sep 2 at 9:25




    @mathamity Yes the main steps are equivalent, that is $langle v_i,v_j rangle=0$ and $langle w,v_k rangle=a_k$.
    – gimusi
    Sep 2 at 9:25










    up vote
    0
    down vote













    Since $v_1, ldots, v_n$ is an orthonormal basis, we have $langle v_k, v_jrangle = delta_kj$ and $x = sum_i=1^n langle x, v_irangle v_i$ for all $x in V$.



    Therefore
    $$langle w,z rangle= leftlangle sum_k=1^n langle w, v_krangle v_k, sum_j=1^n langle z, v_jrangle v_krightrangle = sum_k=1^nsum_j=1^n langle w,v_kranglelangle v_j,zrangle underbracelangle v_k, v_jrangle_delta_kj = sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






    share|cite|improve this answer
























      up vote
      0
      down vote













      Since $v_1, ldots, v_n$ is an orthonormal basis, we have $langle v_k, v_jrangle = delta_kj$ and $x = sum_i=1^n langle x, v_irangle v_i$ for all $x in V$.



      Therefore
      $$langle w,z rangle= leftlangle sum_k=1^n langle w, v_krangle v_k, sum_j=1^n langle z, v_jrangle v_krightrangle = sum_k=1^nsum_j=1^n langle w,v_kranglelangle v_j,zrangle underbracelangle v_k, v_jrangle_delta_kj = sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






      share|cite|improve this answer






















        up vote
        0
        down vote










        up vote
        0
        down vote









        Since $v_1, ldots, v_n$ is an orthonormal basis, we have $langle v_k, v_jrangle = delta_kj$ and $x = sum_i=1^n langle x, v_irangle v_i$ for all $x in V$.



        Therefore
        $$langle w,z rangle= leftlangle sum_k=1^n langle w, v_krangle v_k, sum_j=1^n langle z, v_jrangle v_krightrangle = sum_k=1^nsum_j=1^n langle w,v_kranglelangle v_j,zrangle underbracelangle v_k, v_jrangle_delta_kj = sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$






        share|cite|improve this answer












        Since $v_1, ldots, v_n$ is an orthonormal basis, we have $langle v_k, v_jrangle = delta_kj$ and $x = sum_i=1^n langle x, v_irangle v_i$ for all $x in V$.



        Therefore
        $$langle w,z rangle= leftlangle sum_k=1^n langle w, v_krangle v_k, sum_j=1^n langle z, v_jrangle v_krightrangle = sum_k=1^nsum_j=1^n langle w,v_kranglelangle v_j,zrangle underbracelangle v_k, v_jrangle_delta_kj = sum_k=1^n langle w,v_kranglelangle v_k,zrangle$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 2 at 14:57









        mechanodroid

        24k52244




        24k52244



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902512%2fouter-in-terms-of-basis%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Solve: $(3xy-2ay^2)dx+(x^2-2axy)dy=0$