Finding a First Integral of a System of First-Order DEs
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$
My attempt:
I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.
differential-equations proof-verification systems-of-equations
add a comment |Â
up vote
4
down vote
favorite
I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$
My attempt:
I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.
differential-equations proof-verification systems-of-equations
3
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$
My attempt:
I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.
differential-equations proof-verification systems-of-equations
I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$
My attempt:
I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.
differential-equations proof-verification systems-of-equations
differential-equations proof-verification systems-of-equations
asked Sep 2 at 7:33
Bell
835314
835314
3
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40
add a comment |Â
3
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40
3
3
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
Your solution is correct. At the line before the end, simply multiply by $a$ and observe :
$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$
$$implies$$
$$hatC = ln|x_1| + aln|x_2|$$
$$implies$$
$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$
which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Your solution is correct. At the line before the end, simply multiply by $a$ and observe :
$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$
$$implies$$
$$hatC = ln|x_1| + aln|x_2|$$
$$implies$$
$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$
which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.
add a comment |Â
up vote
3
down vote
accepted
Your solution is correct. At the line before the end, simply multiply by $a$ and observe :
$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$
$$implies$$
$$hatC = ln|x_1| + aln|x_2|$$
$$implies$$
$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$
which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Your solution is correct. At the line before the end, simply multiply by $a$ and observe :
$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$
$$implies$$
$$hatC = ln|x_1| + aln|x_2|$$
$$implies$$
$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$
which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.
Your solution is correct. At the line before the end, simply multiply by $a$ and observe :
$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$
$$implies$$
$$hatC = ln|x_1| + aln|x_2|$$
$$implies$$
$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$
which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.
answered Sep 2 at 7:43
Rebellos
10.2k21039
10.2k21039
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902441%2ffinding-a-first-integral-of-a-system-of-first-order-des%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
3
$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
â W. mu
Sep 2 at 7:40