Finding a First Integral of a System of First-Order DEs

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite













I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$




My attempt:



I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.










share|cite|improve this question

















  • 3




    $frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
    – W. mu
    Sep 2 at 7:40















up vote
4
down vote

favorite













I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$




My attempt:



I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.










share|cite|improve this question

















  • 3




    $frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
    – W. mu
    Sep 2 at 7:40













up vote
4
down vote

favorite









up vote
4
down vote

favorite












I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$




My attempt:



I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.










share|cite|improve this question














I am trying to show that the system $$fracdx_1dt=ax_1, fracdx_2dt=-x_2$$ has a first integral of the form $$K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$$




My attempt:



I will use the following method.
$$fracdx_1dt=ax_1iff fracdx_1ax_1=dt (1)$$
$$fracdx_2dt=-x_2iff fracdx_2-x_2=dt (2)$$
Equating $(1)$ and $(2)$ yields
beginalign
fracdx_1ax_1&=fracdx_2-x_2 \
frac1aln|x_1|&=-ln|x_2|+C \
ln|x_1|+aln|x_2|&=0 (C=0)
endalign
I do not know where to go from here. Is my working correct so far? Any advice would be greatly appreciated.







differential-equations proof-verification systems-of-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 2 at 7:33









Bell

835314




835314







  • 3




    $frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
    – W. mu
    Sep 2 at 7:40













  • 3




    $frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
    – W. mu
    Sep 2 at 7:40








3




3




$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
– W. mu
Sep 2 at 7:40





$frac1aln|x_1|=-ln|x_2|+C$ is equivalent to $hatC=ln|x_1|+aln|x_2|$, where $hatC$ is the first integral.
– W. mu
Sep 2 at 7:40











1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










Your solution is correct. At the line before the end, simply multiply by $a$ and observe :



$$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$



$$implies$$



$$hatC = ln|x_1| + aln|x_2|$$



$$implies$$



$$C(x_1,x_2) = ln|x_1| + aln|x_2|$$



which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902441%2ffinding-a-first-integral-of-a-system-of-first-order-des%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    Your solution is correct. At the line before the end, simply multiply by $a$ and observe :



    $$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$



    $$implies$$



    $$hatC = ln|x_1| + aln|x_2|$$



    $$implies$$



    $$C(x_1,x_2) = ln|x_1| + aln|x_2|$$



    which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.






    share|cite|improve this answer
























      up vote
      3
      down vote



      accepted










      Your solution is correct. At the line before the end, simply multiply by $a$ and observe :



      $$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$



      $$implies$$



      $$hatC = ln|x_1| + aln|x_2|$$



      $$implies$$



      $$C(x_1,x_2) = ln|x_1| + aln|x_2|$$



      which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.






      share|cite|improve this answer






















        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        Your solution is correct. At the line before the end, simply multiply by $a$ and observe :



        $$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$



        $$implies$$



        $$hatC = ln|x_1| + aln|x_2|$$



        $$implies$$



        $$C(x_1,x_2) = ln|x_1| + aln|x_2|$$



        which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.






        share|cite|improve this answer












        Your solution is correct. At the line before the end, simply multiply by $a$ and observe :



        $$frac1aln|x_1|=-ln|x_2|+C Leftrightarrow aC =ln|x_1| + aln|x_2| $$



        $$implies$$



        $$hatC = ln|x_1| + aln|x_2|$$



        $$implies$$



        $$C(x_1,x_2) = ln|x_1| + aln|x_2|$$



        which is indeed a first integral of the form $K(x_1,x_2)=ln(f(x_1))+ln(g(x_2))a$ with $K(x_1,x_2) = C(x_1,x_2), ; f(x_1) = |x_1|, ; f(x_2) = |x_2|$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 2 at 7:43









        Rebellos

        10.2k21039




        10.2k21039



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902441%2ffinding-a-first-integral-of-a-system-of-first-order-des%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Solve: $(3xy-2ay^2)dx+(x^2-2axy)dy=0$