Integral including functions $operatornameerfc(.), exp(.) $ and $ cos(.)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$



However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.



Does anyone have an idea?










share|cite|improve this question























  • Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
    – b00n heT
    Sep 2 at 7:07










  • I have tried this substitution before.
    – Frey
    Sep 2 at 7:12














up vote
2
down vote

favorite












I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$



However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.



Does anyone have an idea?










share|cite|improve this question























  • Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
    – b00n heT
    Sep 2 at 7:07










  • I have tried this substitution before.
    – Frey
    Sep 2 at 7:12












up vote
2
down vote

favorite









up vote
2
down vote

favorite











I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$



However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.



Does anyone have an idea?










share|cite|improve this question















I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$



However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.



Does anyone have an idea?







integration analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 2 at 8:19









José Carlos Santos

121k16101186




121k16101186










asked Sep 2 at 6:24









Frey

626312




626312











  • Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
    – b00n heT
    Sep 2 at 7:07










  • I have tried this substitution before.
    – Frey
    Sep 2 at 7:12
















  • Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
    – b00n heT
    Sep 2 at 7:07










  • I have tried this substitution before.
    – Frey
    Sep 2 at 7:12















Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
– b00n heT
Sep 2 at 7:07




Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
– b00n heT
Sep 2 at 7:07












I have tried this substitution before.
– Frey
Sep 2 at 7:12




I have tried this substitution before.
– Frey
Sep 2 at 7:12










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.



eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign






share|cite|improve this answer






















  • Really helpful, great! thanks @Paul.
    – Frey
    Sep 4 at 23:51










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902401%2fintegral-including-functions-operatornameerfc-exp-and-cos%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote



accepted










Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.



eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign






share|cite|improve this answer






















  • Really helpful, great! thanks @Paul.
    – Frey
    Sep 4 at 23:51














up vote
0
down vote



accepted










Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.



eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign






share|cite|improve this answer






















  • Really helpful, great! thanks @Paul.
    – Frey
    Sep 4 at 23:51












up vote
0
down vote



accepted







up vote
0
down vote



accepted






Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.



eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign






share|cite|improve this answer














Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.



eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Sep 5 at 19:26

























answered Sep 2 at 17:05









Paul Enta

3,3701925




3,3701925











  • Really helpful, great! thanks @Paul.
    – Frey
    Sep 4 at 23:51
















  • Really helpful, great! thanks @Paul.
    – Frey
    Sep 4 at 23:51















Really helpful, great! thanks @Paul.
– Frey
Sep 4 at 23:51




Really helpful, great! thanks @Paul.
– Frey
Sep 4 at 23:51

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902401%2fintegral-including-functions-operatornameerfc-exp-and-cos%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

Why am i infinitely getting the same tweet with the Twitter Search API?

Amount of Number Combinations to Reach a Sum of 10 With Integers 1-9 Using 2 or More Integers [closed]