Integral including functions $operatornameerfc(.), exp(.) $ and $ cos(.)$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$
However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.
Does anyone have an idea?
integration analysis
add a comment |Â
up vote
2
down vote
favorite
I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$
However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.
Does anyone have an idea?
integration analysis
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
I have tried this substitution before.
â Frey
Sep 2 at 7:12
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$
However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.
Does anyone have an idea?
integration analysis
I have following integral. MATHEMATICA evaluates it as follows for $a>0$:
$$I=int_0^pi/2cos (theta ) e^a^2 cos ^2(theta ) texterfc(a cos (theta ))dtheta=fracsqrtpi left(1-e^a^2 texterfcleft(aright)right)2 a$$
However, I have no clue how this result comes. I have checked few integral table books such as Table of Integrals, Series, and Products, and also functions.wolfram.com. But I could not find matching expressions.
Does anyone have an idea?
integration analysis
integration analysis
edited Sep 2 at 8:19
José Carlos Santos
121k16101186
121k16101186
asked Sep 2 at 6:24
Frey
626312
626312
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
I have tried this substitution before.
â Frey
Sep 2 at 7:12
add a comment |Â
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
I have tried this substitution before.
â Frey
Sep 2 at 7:12
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
I have tried this substitution before.
â Frey
Sep 2 at 7:12
I have tried this substitution before.
â Frey
Sep 2 at 7:12
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.
eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.
eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
add a comment |Â
up vote
0
down vote
accepted
Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.
eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.
eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign
Probably not the most direct way to obtain the result, but one possible method:
From the integral representation DLMF
beginequation
int_0^inftyfrace^-a^2tsqrtt+cos^2thetamathrmdt=fracsqrtpiae^a^2cos^2thetaoperatornameerfcleft(acosthetaright) tag1label1
endequation
the integral can be transformed into
beginequation
I=fracasqrtpiint_0^pi/2cos theta ,dtheta int_0^inftyfrace^-a^2tsqrtt+cos^2theta,mathrmdt
endequation
By changing the integration order,
beginalign
I&=fracasqrtpiint_0^inftye^-a^2t,dtint_0^pi/2fraccos theta sqrtt+1-sin^2theta,dtheta\
&=fracasqrtpiint_0^inftye^-a^2tarcsin frac1sqrtt+1,dt
endalign
Now, integrating by parts, ($u'=e^-a^2t,v=arcsin frac1sqrtt+1$), we get
beginalign
I&=fracasqrtpileft[fracpi2a^2-frac12a^2int_0^inftyfrace^-a^2tsqrtt(t+1) right]\
&=fracasqrtpileft[fracpi2a^2-frac1a^2int_0^inftyfrace^-a^2u^2u^2+1 right]
endalign
(by changing $t=u^2$). Using the integral representation DLMF
beginequation
operatornameerfc(a)=frac2pie^-a^2int_0^inftyfrace^-a^2u^%
2u^2+1mathrmdu tag2label2
endequation
the final result is obtained:
beginequation
I= fracsqrtpi left(1-e^a^2 operatornameerfcleft(aright)right)2 a
endequation
eqref1 This identity is retrieved by changing $t=u^2-cos^2theta$ in the integral.
eqref2
With $A=a^2$, defining
beginalign
J(A)&=frac2piint_0^inftyfrace^-Aleft( u^2+1 right)u^2+1\
fracdJ(A)dA&=-frac2piint_0^infty e^-Aleft( u^2+1 right),du\
&=-frac1sqrtpi Ae^-A
endalign
and remarking that $J(0)=1$,
beginalign
J(A)&=1-frac1sqrtpiint_0^Afrace^-ssqrts,ds\
&=1-operatornameerf(a)
endalign
edited Sep 5 at 19:26
answered Sep 2 at 17:05
Paul Enta
3,3701925
3,3701925
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
add a comment |Â
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
Really helpful, great! thanks @Paul.
â Frey
Sep 4 at 23:51
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902401%2fintegral-including-functions-operatornameerfc-exp-and-cos%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Of course the most natural substitution is $x=acos(theta)$, which simplifies the integral by a lot. Otherwise you could use the classical en.wikipedia.org/wiki/Tangent_half-angle_substitution to avoid having roots in your integral. In any case, after that you probably need some partial integration to simply further.
â b00n heT
Sep 2 at 7:07
I have tried this substitution before.
â Frey
Sep 2 at 7:12