To prove that a set is the smallest ideal of R
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Problem
Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.
Attempt
1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$
2) It is a subring.
Hence $I$ is an ideal .
Doubt
I am not sure how to prove second part.
$I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.
abstract-algebra ring-theory
add a comment |Â
up vote
1
down vote
favorite
Problem
Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.
Attempt
1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$
2) It is a subring.
Hence $I$ is an ideal .
Doubt
I am not sure how to prove second part.
$I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.
abstract-algebra ring-theory
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Problem
Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.
Attempt
1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$
2) It is a subring.
Hence $I$ is an ideal .
Doubt
I am not sure how to prove second part.
$I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.
abstract-algebra ring-theory
Problem
Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.
Attempt
1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$
2) It is a subring.
Hence $I$ is an ideal .
Doubt
I am not sure how to prove second part.
$I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.
abstract-algebra ring-theory
abstract-algebra ring-theory
edited Sep 7 at 4:48
asked Sep 7 at 4:42
blue boy
1,117513
1,117513
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Since
$a_i in J, ; 1 le i le n, tag 1$
then
$r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$
therefore,
$displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$
but the sums
$displaystyle sum_1^n r_i a_i tag 4$
are precisely the elements of $I$; therefore,
$I subseteq J. tag 5$
To show $I$ is an subring merely note that if
$displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$
then
$displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$
as for products,
$left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$
since each $a_i in I$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Since
$a_i in J, ; 1 le i le n, tag 1$
then
$r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$
therefore,
$displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$
but the sums
$displaystyle sum_1^n r_i a_i tag 4$
are precisely the elements of $I$; therefore,
$I subseteq J. tag 5$
To show $I$ is an subring merely note that if
$displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$
then
$displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$
as for products,
$left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$
since each $a_i in I$.
add a comment |Â
up vote
0
down vote
accepted
Since
$a_i in J, ; 1 le i le n, tag 1$
then
$r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$
therefore,
$displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$
but the sums
$displaystyle sum_1^n r_i a_i tag 4$
are precisely the elements of $I$; therefore,
$I subseteq J. tag 5$
To show $I$ is an subring merely note that if
$displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$
then
$displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$
as for products,
$left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$
since each $a_i in I$.
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Since
$a_i in J, ; 1 le i le n, tag 1$
then
$r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$
therefore,
$displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$
but the sums
$displaystyle sum_1^n r_i a_i tag 4$
are precisely the elements of $I$; therefore,
$I subseteq J. tag 5$
To show $I$ is an subring merely note that if
$displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$
then
$displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$
as for products,
$left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$
since each $a_i in I$.
Since
$a_i in J, ; 1 le i le n, tag 1$
then
$r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$
therefore,
$displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$
but the sums
$displaystyle sum_1^n r_i a_i tag 4$
are precisely the elements of $I$; therefore,
$I subseteq J. tag 5$
To show $I$ is an subring merely note that if
$displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$
then
$displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$
as for products,
$left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$
since each $a_i in I$.
edited Sep 7 at 5:44
answered Sep 7 at 5:14
Robert Lewis
38.9k22358
38.9k22358
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908274%2fto-prove-that-a-set-is-the-smallest-ideal-of-r%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password