To prove that a set is the smallest ideal of R

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












Problem



Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.



Attempt



1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$



2) It is a subring.



Hence $I$ is an ideal .



Doubt
I am not sure how to prove second part.
$I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.










share|cite|improve this question



























    up vote
    1
    down vote

    favorite
    1












    Problem



    Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.



    Attempt



    1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$



    2) It is a subring.



    Hence $I$ is an ideal .



    Doubt
    I am not sure how to prove second part.
    $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.










    share|cite|improve this question

























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Problem



      Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.



      Attempt



      1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$



      2) It is a subring.



      Hence $I$ is an ideal .



      Doubt
      I am not sure how to prove second part.
      $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.










      share|cite|improve this question















      Problem



      Let R be a commutative ring with unity and let $a_1,a_2,.......,a_n$ belong to R. Then prove that $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ is an ideal and if J is any ideal that contains $a_1a_2,...a_n$,then $I subseteq J$.



      Attempt



      1) $ra,ar in I$ where $a= langle a_1,a_2,....a_nrangle$



      2) It is a subring.



      Hence $I$ is an ideal .



      Doubt
      I am not sure how to prove second part.
      $I=langle a_1,a_2,....a_n rangle$=$r_1a_1+...+r_na_n$ where $r_i neq 0$.







      abstract-algebra ring-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 7 at 4:48

























      asked Sep 7 at 4:42









      blue boy

      1,117513




      1,117513




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Since



          $a_i in J, ; 1 le i le n, tag 1$



          then



          $r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$



          therefore,



          $displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$



          but the sums



          $displaystyle sum_1^n r_i a_i tag 4$



          are precisely the elements of $I$; therefore,



          $I subseteq J. tag 5$



          To show $I$ is an subring merely note that if



          $displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$



          then



          $displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$



          as for products,



          $left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$



          since each $a_i in I$.






          share|cite|improve this answer






















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908274%2fto-prove-that-a-set-is-the-smallest-ideal-of-r%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            Since



            $a_i in J, ; 1 le i le n, tag 1$



            then



            $r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$



            therefore,



            $displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$



            but the sums



            $displaystyle sum_1^n r_i a_i tag 4$



            are precisely the elements of $I$; therefore,



            $I subseteq J. tag 5$



            To show $I$ is an subring merely note that if



            $displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$



            then



            $displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$



            as for products,



            $left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$



            since each $a_i in I$.






            share|cite|improve this answer


























              up vote
              0
              down vote



              accepted










              Since



              $a_i in J, ; 1 le i le n, tag 1$



              then



              $r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$



              therefore,



              $displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$



              but the sums



              $displaystyle sum_1^n r_i a_i tag 4$



              are precisely the elements of $I$; therefore,



              $I subseteq J. tag 5$



              To show $I$ is an subring merely note that if



              $displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$



              then



              $displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$



              as for products,



              $left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$



              since each $a_i in I$.






              share|cite|improve this answer
























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                Since



                $a_i in J, ; 1 le i le n, tag 1$



                then



                $r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$



                therefore,



                $displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$



                but the sums



                $displaystyle sum_1^n r_i a_i tag 4$



                are precisely the elements of $I$; therefore,



                $I subseteq J. tag 5$



                To show $I$ is an subring merely note that if



                $displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$



                then



                $displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$



                as for products,



                $left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$



                since each $a_i in I$.






                share|cite|improve this answer














                Since



                $a_i in J, ; 1 le i le n, tag 1$



                then



                $r_i a_i in J, ; r_i in R, ; 1 le i le n; tag 2$



                therefore,



                $displaystyle sum_1^n r_i a_i in J, ; forall r_i in R, ; 1 le i le n; tag 3$



                but the sums



                $displaystyle sum_1^n r_i a_i tag 4$



                are precisely the elements of $I$; therefore,



                $I subseteq J. tag 5$



                To show $I$ is an subring merely note that if



                $displaystyle sum_1^n r_i a_i, ; sum_1^n s_i a_i in I, tag 6$



                then



                $displaystyle sum_1^n r_i a_i - sum_1^n s_i a_i = sum_1^n (r_i - s_i) a_i in I; tag 7$



                as for products,



                $left (displaystyle sum_1^n r_i a_i right ) left(displaystyle sum_1^n s_i a_i right ) = displaystyle sum_i,j = 1^n r_i s_j a_i a_j in I, tag 8$



                since each $a_i in I$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Sep 7 at 5:44

























                answered Sep 7 at 5:14









                Robert Lewis

                38.9k22358




                38.9k22358



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908274%2fto-prove-that-a-set-is-the-smallest-ideal-of-r%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?