Limit as $xto 2$ of $fraccos(frac pi x)x-2 $
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I am a kid trying to teach myself Calculus in order to prepare for next year.
I have the expression
$$lim_xto 2fraccos(frac pi x)x-2 $$
There is a hint that says to substitute t for $(frac pi2 - frac pi x)$ and WolframAlpha evaluates this expression as $frac pi4$. However, I got the answer of $1$. Can someone clarify the steps to solving this problem.
calculus limits trigonometry limits-without-lhopital
add a comment |Â
up vote
3
down vote
favorite
I am a kid trying to teach myself Calculus in order to prepare for next year.
I have the expression
$$lim_xto 2fraccos(frac pi x)x-2 $$
There is a hint that says to substitute t for $(frac pi2 - frac pi x)$ and WolframAlpha evaluates this expression as $frac pi4$. However, I got the answer of $1$. Can someone clarify the steps to solving this problem.
calculus limits trigonometry limits-without-lhopital
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I am a kid trying to teach myself Calculus in order to prepare for next year.
I have the expression
$$lim_xto 2fraccos(frac pi x)x-2 $$
There is a hint that says to substitute t for $(frac pi2 - frac pi x)$ and WolframAlpha evaluates this expression as $frac pi4$. However, I got the answer of $1$. Can someone clarify the steps to solving this problem.
calculus limits trigonometry limits-without-lhopital
I am a kid trying to teach myself Calculus in order to prepare for next year.
I have the expression
$$lim_xto 2fraccos(frac pi x)x-2 $$
There is a hint that says to substitute t for $(frac pi2 - frac pi x)$ and WolframAlpha evaluates this expression as $frac pi4$. However, I got the answer of $1$. Can someone clarify the steps to solving this problem.
calculus limits trigonometry limits-without-lhopital
calculus limits trigonometry limits-without-lhopital
edited Sep 26 '15 at 9:53
Martin Sleziak
43.7k6113261
43.7k6113261
asked Sep 24 '15 at 5:20
James
233
233
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06
add a comment |Â
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
5
down vote
accepted
HINT:
$$cosdfracpi x=sinleft(dfracpi2-dfracpi xright)=sindfracpi(x-2)2x$$
Now set $dfracpi(x-2)2x=y$ and use $lim_hto adfracsin(h-a)h-a=1$
add a comment |Â
up vote
3
down vote
Here is my solution using only $lim_x to 0 fracsin(x)x = 1$, using the methods the questions asks for (the $t$ substitution)
$$lim_x to 2 fraccos(pi/x)x-2$$
$$ = lim_x to 2 fracsin(fracpi2 - fracpix)x-2$$
substitute $t= fracpi2 - fracpix$, $;;x = frac2 pipi-2 t$
$$ = lim_t to 0 fracsin(t)frac2 pipi-2 t-2$$
$$ = lim_t to 0 fracsin(t)frac2 pi - 2(pi-2 t)pi-2 t$$
$$ = lim_t to 0 frac(pi-2 t)sin(t)2 pi - 2(pi-2 t)$$
Substitute $r = pi-2 t$, $;;t = fracpi-r2$
$$ = lim_r to pi fracrsin(fracpi-r2)2(pi - r)$$
$$ = frac14lim_r to pi fracrsin(fracpi-r2)fracpi-r2$$
Substitute $k = fracpi-r2$, $;;r= pi-2k$
$$ = frac14lim_k to 0 frac(pi-2k)sin(k)k$$
$$ = frac14bigg[lim_k to 0 (pi-2k)*lim_k to 0fracsin(k)kbigg]$$
$$=fracpi4$$
I unfortunately only got this after an answer was accepted, as messing around with a limit this much takes a while and involved some trial and error before I could figure out what to do... there might be a way to condense this proof, but I always jump right into these things by making substitution after substitution until I get to a form that I know.
add a comment |Â
up vote
0
down vote
$$lim_xto2fraccos(ÃÂ/x)x-2$$
Which leads us to an Indeterminate form i.e.,(0/0) form ,
so apply L-Hospital rule ,
$$lim_xto2[-sin(ÃÂ/x)-ÃÂ/x^2]
=lim_xto2 fracÃÂx^2
=fracpi4$$
add a comment |Â
up vote
0
down vote
Let $x=2+y$ with $yne 0$.We have $x-2=y$ and $ pi/x=pi/(2+y)=pi/2-pi y/(4+2 y) . $ So $cos pi/x=sin pi y/(4+2 y)=(1-f(y)(pi y/(4+2 y)$ where $lim_yto 0 f(y)=0 . $ Hence $(cos pi/x)/(2-x)= (1-f(y)(pi/(4+2 y)).$
add a comment |Â
up vote
0
down vote
Let $dfrac1x=y$ then
beginalign
limlimits_x to 2 fraccosleft(fracpixright)x-2
&= limlimits_y to frac12 fracsinleft(fracpi2-pi yright)dfrac1y-2\
&= limlimits_y to frac12 fracsinpileft(frac12- yright)pileft(frac12- yright)dfracleft(frac12- yright)1-2ypi y\
&= colorbluedfracpi4
endalign
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
HINT:
$$cosdfracpi x=sinleft(dfracpi2-dfracpi xright)=sindfracpi(x-2)2x$$
Now set $dfracpi(x-2)2x=y$ and use $lim_hto adfracsin(h-a)h-a=1$
add a comment |Â
up vote
5
down vote
accepted
HINT:
$$cosdfracpi x=sinleft(dfracpi2-dfracpi xright)=sindfracpi(x-2)2x$$
Now set $dfracpi(x-2)2x=y$ and use $lim_hto adfracsin(h-a)h-a=1$
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
HINT:
$$cosdfracpi x=sinleft(dfracpi2-dfracpi xright)=sindfracpi(x-2)2x$$
Now set $dfracpi(x-2)2x=y$ and use $lim_hto adfracsin(h-a)h-a=1$
HINT:
$$cosdfracpi x=sinleft(dfracpi2-dfracpi xright)=sindfracpi(x-2)2x$$
Now set $dfracpi(x-2)2x=y$ and use $lim_hto adfracsin(h-a)h-a=1$
answered Sep 24 '15 at 5:22
lab bhattacharjee
216k14153266
216k14153266
add a comment |Â
add a comment |Â
up vote
3
down vote
Here is my solution using only $lim_x to 0 fracsin(x)x = 1$, using the methods the questions asks for (the $t$ substitution)
$$lim_x to 2 fraccos(pi/x)x-2$$
$$ = lim_x to 2 fracsin(fracpi2 - fracpix)x-2$$
substitute $t= fracpi2 - fracpix$, $;;x = frac2 pipi-2 t$
$$ = lim_t to 0 fracsin(t)frac2 pipi-2 t-2$$
$$ = lim_t to 0 fracsin(t)frac2 pi - 2(pi-2 t)pi-2 t$$
$$ = lim_t to 0 frac(pi-2 t)sin(t)2 pi - 2(pi-2 t)$$
Substitute $r = pi-2 t$, $;;t = fracpi-r2$
$$ = lim_r to pi fracrsin(fracpi-r2)2(pi - r)$$
$$ = frac14lim_r to pi fracrsin(fracpi-r2)fracpi-r2$$
Substitute $k = fracpi-r2$, $;;r= pi-2k$
$$ = frac14lim_k to 0 frac(pi-2k)sin(k)k$$
$$ = frac14bigg[lim_k to 0 (pi-2k)*lim_k to 0fracsin(k)kbigg]$$
$$=fracpi4$$
I unfortunately only got this after an answer was accepted, as messing around with a limit this much takes a while and involved some trial and error before I could figure out what to do... there might be a way to condense this proof, but I always jump right into these things by making substitution after substitution until I get to a form that I know.
add a comment |Â
up vote
3
down vote
Here is my solution using only $lim_x to 0 fracsin(x)x = 1$, using the methods the questions asks for (the $t$ substitution)
$$lim_x to 2 fraccos(pi/x)x-2$$
$$ = lim_x to 2 fracsin(fracpi2 - fracpix)x-2$$
substitute $t= fracpi2 - fracpix$, $;;x = frac2 pipi-2 t$
$$ = lim_t to 0 fracsin(t)frac2 pipi-2 t-2$$
$$ = lim_t to 0 fracsin(t)frac2 pi - 2(pi-2 t)pi-2 t$$
$$ = lim_t to 0 frac(pi-2 t)sin(t)2 pi - 2(pi-2 t)$$
Substitute $r = pi-2 t$, $;;t = fracpi-r2$
$$ = lim_r to pi fracrsin(fracpi-r2)2(pi - r)$$
$$ = frac14lim_r to pi fracrsin(fracpi-r2)fracpi-r2$$
Substitute $k = fracpi-r2$, $;;r= pi-2k$
$$ = frac14lim_k to 0 frac(pi-2k)sin(k)k$$
$$ = frac14bigg[lim_k to 0 (pi-2k)*lim_k to 0fracsin(k)kbigg]$$
$$=fracpi4$$
I unfortunately only got this after an answer was accepted, as messing around with a limit this much takes a while and involved some trial and error before I could figure out what to do... there might be a way to condense this proof, but I always jump right into these things by making substitution after substitution until I get to a form that I know.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Here is my solution using only $lim_x to 0 fracsin(x)x = 1$, using the methods the questions asks for (the $t$ substitution)
$$lim_x to 2 fraccos(pi/x)x-2$$
$$ = lim_x to 2 fracsin(fracpi2 - fracpix)x-2$$
substitute $t= fracpi2 - fracpix$, $;;x = frac2 pipi-2 t$
$$ = lim_t to 0 fracsin(t)frac2 pipi-2 t-2$$
$$ = lim_t to 0 fracsin(t)frac2 pi - 2(pi-2 t)pi-2 t$$
$$ = lim_t to 0 frac(pi-2 t)sin(t)2 pi - 2(pi-2 t)$$
Substitute $r = pi-2 t$, $;;t = fracpi-r2$
$$ = lim_r to pi fracrsin(fracpi-r2)2(pi - r)$$
$$ = frac14lim_r to pi fracrsin(fracpi-r2)fracpi-r2$$
Substitute $k = fracpi-r2$, $;;r= pi-2k$
$$ = frac14lim_k to 0 frac(pi-2k)sin(k)k$$
$$ = frac14bigg[lim_k to 0 (pi-2k)*lim_k to 0fracsin(k)kbigg]$$
$$=fracpi4$$
I unfortunately only got this after an answer was accepted, as messing around with a limit this much takes a while and involved some trial and error before I could figure out what to do... there might be a way to condense this proof, but I always jump right into these things by making substitution after substitution until I get to a form that I know.
Here is my solution using only $lim_x to 0 fracsin(x)x = 1$, using the methods the questions asks for (the $t$ substitution)
$$lim_x to 2 fraccos(pi/x)x-2$$
$$ = lim_x to 2 fracsin(fracpi2 - fracpix)x-2$$
substitute $t= fracpi2 - fracpix$, $;;x = frac2 pipi-2 t$
$$ = lim_t to 0 fracsin(t)frac2 pipi-2 t-2$$
$$ = lim_t to 0 fracsin(t)frac2 pi - 2(pi-2 t)pi-2 t$$
$$ = lim_t to 0 frac(pi-2 t)sin(t)2 pi - 2(pi-2 t)$$
Substitute $r = pi-2 t$, $;;t = fracpi-r2$
$$ = lim_r to pi fracrsin(fracpi-r2)2(pi - r)$$
$$ = frac14lim_r to pi fracrsin(fracpi-r2)fracpi-r2$$
Substitute $k = fracpi-r2$, $;;r= pi-2k$
$$ = frac14lim_k to 0 frac(pi-2k)sin(k)k$$
$$ = frac14bigg[lim_k to 0 (pi-2k)*lim_k to 0fracsin(k)kbigg]$$
$$=fracpi4$$
I unfortunately only got this after an answer was accepted, as messing around with a limit this much takes a while and involved some trial and error before I could figure out what to do... there might be a way to condense this proof, but I always jump right into these things by making substitution after substitution until I get to a form that I know.
edited Sep 26 '15 at 11:28
Martin Sleziak
43.7k6113261
43.7k6113261
answered Sep 24 '15 at 5:53
Brevan Ellefsen
11.6k31549
11.6k31549
add a comment |Â
add a comment |Â
up vote
0
down vote
$$lim_xto2fraccos(ÃÂ/x)x-2$$
Which leads us to an Indeterminate form i.e.,(0/0) form ,
so apply L-Hospital rule ,
$$lim_xto2[-sin(ÃÂ/x)-ÃÂ/x^2]
=lim_xto2 fracÃÂx^2
=fracpi4$$
add a comment |Â
up vote
0
down vote
$$lim_xto2fraccos(ÃÂ/x)x-2$$
Which leads us to an Indeterminate form i.e.,(0/0) form ,
so apply L-Hospital rule ,
$$lim_xto2[-sin(ÃÂ/x)-ÃÂ/x^2]
=lim_xto2 fracÃÂx^2
=fracpi4$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$lim_xto2fraccos(ÃÂ/x)x-2$$
Which leads us to an Indeterminate form i.e.,(0/0) form ,
so apply L-Hospital rule ,
$$lim_xto2[-sin(ÃÂ/x)-ÃÂ/x^2]
=lim_xto2 fracÃÂx^2
=fracpi4$$
$$lim_xto2fraccos(ÃÂ/x)x-2$$
Which leads us to an Indeterminate form i.e.,(0/0) form ,
so apply L-Hospital rule ,
$$lim_xto2[-sin(ÃÂ/x)-ÃÂ/x^2]
=lim_xto2 fracÃÂx^2
=fracpi4$$
edited Oct 4 '15 at 4:19
answered Sep 24 '15 at 7:12
Naveen malagi
1059
1059
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $x=2+y$ with $yne 0$.We have $x-2=y$ and $ pi/x=pi/(2+y)=pi/2-pi y/(4+2 y) . $ So $cos pi/x=sin pi y/(4+2 y)=(1-f(y)(pi y/(4+2 y)$ where $lim_yto 0 f(y)=0 . $ Hence $(cos pi/x)/(2-x)= (1-f(y)(pi/(4+2 y)).$
add a comment |Â
up vote
0
down vote
Let $x=2+y$ with $yne 0$.We have $x-2=y$ and $ pi/x=pi/(2+y)=pi/2-pi y/(4+2 y) . $ So $cos pi/x=sin pi y/(4+2 y)=(1-f(y)(pi y/(4+2 y)$ where $lim_yto 0 f(y)=0 . $ Hence $(cos pi/x)/(2-x)= (1-f(y)(pi/(4+2 y)).$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $x=2+y$ with $yne 0$.We have $x-2=y$ and $ pi/x=pi/(2+y)=pi/2-pi y/(4+2 y) . $ So $cos pi/x=sin pi y/(4+2 y)=(1-f(y)(pi y/(4+2 y)$ where $lim_yto 0 f(y)=0 . $ Hence $(cos pi/x)/(2-x)= (1-f(y)(pi/(4+2 y)).$
Let $x=2+y$ with $yne 0$.We have $x-2=y$ and $ pi/x=pi/(2+y)=pi/2-pi y/(4+2 y) . $ So $cos pi/x=sin pi y/(4+2 y)=(1-f(y)(pi y/(4+2 y)$ where $lim_yto 0 f(y)=0 . $ Hence $(cos pi/x)/(2-x)= (1-f(y)(pi/(4+2 y)).$
answered Oct 4 '15 at 5:37
DanielWainfleet
32.3k31644
32.3k31644
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $dfrac1x=y$ then
beginalign
limlimits_x to 2 fraccosleft(fracpixright)x-2
&= limlimits_y to frac12 fracsinleft(fracpi2-pi yright)dfrac1y-2\
&= limlimits_y to frac12 fracsinpileft(frac12- yright)pileft(frac12- yright)dfracleft(frac12- yright)1-2ypi y\
&= colorbluedfracpi4
endalign
add a comment |Â
up vote
0
down vote
Let $dfrac1x=y$ then
beginalign
limlimits_x to 2 fraccosleft(fracpixright)x-2
&= limlimits_y to frac12 fracsinleft(fracpi2-pi yright)dfrac1y-2\
&= limlimits_y to frac12 fracsinpileft(frac12- yright)pileft(frac12- yright)dfracleft(frac12- yright)1-2ypi y\
&= colorbluedfracpi4
endalign
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $dfrac1x=y$ then
beginalign
limlimits_x to 2 fraccosleft(fracpixright)x-2
&= limlimits_y to frac12 fracsinleft(fracpi2-pi yright)dfrac1y-2\
&= limlimits_y to frac12 fracsinpileft(frac12- yright)pileft(frac12- yright)dfracleft(frac12- yright)1-2ypi y\
&= colorbluedfracpi4
endalign
Let $dfrac1x=y$ then
beginalign
limlimits_x to 2 fraccosleft(fracpixright)x-2
&= limlimits_y to frac12 fracsinleft(fracpi2-pi yright)dfrac1y-2\
&= limlimits_y to frac12 fracsinpileft(frac12- yright)pileft(frac12- yright)dfracleft(frac12- yright)1-2ypi y\
&= colorbluedfracpi4
endalign
answered Sep 7 at 5:46
Nosrati
22.6k61748
22.6k61748
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1449177%2flimit-as-x-to-2-of-frac-cos-frac-pi-xx-2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
you are a very advanced "kid" ;-) respect!
â Math-fun
Sep 24 '15 at 6:06