integral of $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite













Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.




Answer is 1007.




I tried multiplying $sqrtx-sqrt2014-x;$,

which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
$

I got stuck so I tried substituting $u=2014-x$,

thus $int_0^2014fracusqrt2014-u+udu=... ?$



I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.

But cannot solve integral. How can it be solved?










share|cite|improve this question

























    up vote
    2
    down vote

    favorite













    Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.




    Answer is 1007.




    I tried multiplying $sqrtx-sqrt2014-x;$,

    which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
    $

    I got stuck so I tried substituting $u=2014-x$,

    thus $int_0^2014fracusqrt2014-u+udu=... ?$



    I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.

    But cannot solve integral. How can it be solved?










    share|cite|improve this question























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite












      Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.




      Answer is 1007.




      I tried multiplying $sqrtx-sqrt2014-x;$,

      which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
      $

      I got stuck so I tried substituting $u=2014-x$,

      thus $int_0^2014fracusqrt2014-u+udu=... ?$



      I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.

      But cannot solve integral. How can it be solved?










      share|cite|improve this question














      Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.




      Answer is 1007.




      I tried multiplying $sqrtx-sqrt2014-x;$,

      which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
      $

      I got stuck so I tried substituting $u=2014-x$,

      thus $int_0^2014fracusqrt2014-u+udu=... ?$



      I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.

      But cannot solve integral. How can it be solved?







      integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 7 at 8:34









      nik

      1046




      1046




















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.



          In particular,



          $$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$



          Relabel the $u$ as $x$, then, adding the integrals together, we get
          $$2I = int_0^2014 1 ,dx$$
          which gives you the result.






          share|cite|improve this answer




















          • Why can't I see it! Thank you.
            – nik
            Sep 7 at 8:54

















          up vote
          5
          down vote













          If you substitute $x mapsto 2014-x$, you get
          $$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
          Hence
          beginalign
          1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
          &= frac12(I+I) = I.
          endalign






          share|cite|improve this answer





























            up vote
            3
            down vote













            $$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$






            share|cite|improve this answer





























              up vote
              0
              down vote













              Don't need to do that substitution again and again just apply this formula



              $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



              $$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$



              Apply the formula



              $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



              $$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$



              add both integrals



              $$2I=int_0^2014dx$$
              $$2I=2014$$
              $$I=1007$$






              share|cite|improve this answer




















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908398%2fintegral-of-int-02014-frac-sqrt2014-x-sqrtx-sqrt2014-xdx%23new-answer', 'question_page');

                );

                Post as a guest






























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                5
                down vote



                accepted










                Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.



                In particular,



                $$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$



                Relabel the $u$ as $x$, then, adding the integrals together, we get
                $$2I = int_0^2014 1 ,dx$$
                which gives you the result.






                share|cite|improve this answer




















                • Why can't I see it! Thank you.
                  – nik
                  Sep 7 at 8:54














                up vote
                5
                down vote



                accepted










                Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.



                In particular,



                $$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$



                Relabel the $u$ as $x$, then, adding the integrals together, we get
                $$2I = int_0^2014 1 ,dx$$
                which gives you the result.






                share|cite|improve this answer




















                • Why can't I see it! Thank you.
                  – nik
                  Sep 7 at 8:54












                up vote
                5
                down vote



                accepted







                up vote
                5
                down vote



                accepted






                Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.



                In particular,



                $$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$



                Relabel the $u$ as $x$, then, adding the integrals together, we get
                $$2I = int_0^2014 1 ,dx$$
                which gives you the result.






                share|cite|improve this answer












                Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.



                In particular,



                $$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$



                Relabel the $u$ as $x$, then, adding the integrals together, we get
                $$2I = int_0^2014 1 ,dx$$
                which gives you the result.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Sep 7 at 8:40









                Alvin Jin

                1,967718




                1,967718











                • Why can't I see it! Thank you.
                  – nik
                  Sep 7 at 8:54
















                • Why can't I see it! Thank you.
                  – nik
                  Sep 7 at 8:54















                Why can't I see it! Thank you.
                – nik
                Sep 7 at 8:54




                Why can't I see it! Thank you.
                – nik
                Sep 7 at 8:54










                up vote
                5
                down vote













                If you substitute $x mapsto 2014-x$, you get
                $$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
                Hence
                beginalign
                1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
                &= frac12(I+I) = I.
                endalign






                share|cite|improve this answer


























                  up vote
                  5
                  down vote













                  If you substitute $x mapsto 2014-x$, you get
                  $$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
                  Hence
                  beginalign
                  1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
                  &= frac12(I+I) = I.
                  endalign






                  share|cite|improve this answer
























                    up vote
                    5
                    down vote










                    up vote
                    5
                    down vote









                    If you substitute $x mapsto 2014-x$, you get
                    $$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
                    Hence
                    beginalign
                    1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
                    &= frac12(I+I) = I.
                    endalign






                    share|cite|improve this answer














                    If you substitute $x mapsto 2014-x$, you get
                    $$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
                    Hence
                    beginalign
                    1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
                    &= frac12(I+I) = I.
                    endalign







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Sep 7 at 8:47

























                    answered Sep 7 at 8:40









                    Sobi

                    2,855517




                    2,855517




















                        up vote
                        3
                        down vote













                        $$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$






                        share|cite|improve this answer


























                          up vote
                          3
                          down vote













                          $$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$






                          share|cite|improve this answer
























                            up vote
                            3
                            down vote










                            up vote
                            3
                            down vote









                            $$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$






                            share|cite|improve this answer














                            $$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Sep 7 at 9:27

























                            answered Sep 7 at 8:45









                            Subhajit Halder

                            1039




                            1039




















                                up vote
                                0
                                down vote













                                Don't need to do that substitution again and again just apply this formula



                                $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                $$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$



                                Apply the formula



                                $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                $$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$



                                add both integrals



                                $$2I=int_0^2014dx$$
                                $$2I=2014$$
                                $$I=1007$$






                                share|cite|improve this answer
























                                  up vote
                                  0
                                  down vote













                                  Don't need to do that substitution again and again just apply this formula



                                  $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                  $$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$



                                  Apply the formula



                                  $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                  $$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$



                                  add both integrals



                                  $$2I=int_0^2014dx$$
                                  $$2I=2014$$
                                  $$I=1007$$






                                  share|cite|improve this answer






















                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    Don't need to do that substitution again and again just apply this formula



                                    $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                    $$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$



                                    Apply the formula



                                    $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                    $$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$



                                    add both integrals



                                    $$2I=int_0^2014dx$$
                                    $$2I=2014$$
                                    $$I=1007$$






                                    share|cite|improve this answer












                                    Don't need to do that substitution again and again just apply this formula



                                    $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                    $$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$



                                    Apply the formula



                                    $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



                                    $$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$



                                    add both integrals



                                    $$2I=int_0^2014dx$$
                                    $$2I=2014$$
                                    $$I=1007$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Sep 7 at 10:01









                                    Deepesh Meena

                                    4,0162925




                                    4,0162925



























                                         

                                        draft saved


                                        draft discarded















































                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908398%2fintegral-of-int-02014-frac-sqrt2014-x-sqrtx-sqrt2014-xdx%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        這個網誌中的熱門文章

                                        How to combine Bézier curves to a surface?

                                        Mutual Information Always Non-negative

                                        Why am i infinitely getting the same tweet with the Twitter Search API?