integral of $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.
Answer is 1007.
I tried multiplying $sqrtx-sqrt2014-x;$,
which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
$
I got stuck so I tried substituting $u=2014-x$,
thus $int_0^2014fracusqrt2014-u+udu=... ?$
I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.
But cannot solve integral. How can it be solved?
integration definite-integrals
add a comment |Â
up vote
2
down vote
favorite
Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.
Answer is 1007.
I tried multiplying $sqrtx-sqrt2014-x;$,
which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
$
I got stuck so I tried substituting $u=2014-x$,
thus $int_0^2014fracusqrt2014-u+udu=... ?$
I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.
But cannot solve integral. How can it be solved?
integration definite-integrals
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.
Answer is 1007.
I tried multiplying $sqrtx-sqrt2014-x;$,
which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
$
I got stuck so I tried substituting $u=2014-x$,
thus $int_0^2014fracusqrt2014-u+udu=... ?$
I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.
But cannot solve integral. How can it be solved?
integration definite-integrals
Solve $int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx $.
Answer is 1007.
I tried multiplying $sqrtx-sqrt2014-x;$,
which results in $fracsqrt2014-x(sqrtx-sqrt2014-x)2x-2014=$$fracsqrt2014x-x^22x-2014-... \ =fracsqrt2014/x-12-2014/x-...
$
I got stuck so I tried substituting $u=2014-x$,
thus $int_0^2014fracusqrt2014-u+udu=... ?$
I found the value of 1007 using the value of integrand at x=0, 1007 and 2014.
But cannot solve integral. How can it be solved?
integration definite-integrals
integration definite-integrals
asked Sep 7 at 8:34
nik
1046
1046
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
5
down vote
accepted
Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.
In particular,
$$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$
Relabel the $u$ as $x$, then, adding the integrals together, we get
$$2I = int_0^2014 1 ,dx$$
which gives you the result.
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
add a comment |Â
up vote
5
down vote
If you substitute $x mapsto 2014-x$, you get
$$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
Hence
beginalign
1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
&= frac12(I+I) = I.
endalign
add a comment |Â
up vote
3
down vote
$$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$
add a comment |Â
up vote
0
down vote
Don't need to do that substitution again and again just apply this formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$
Apply the formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$
add both integrals
$$2I=int_0^2014dx$$
$$2I=2014$$
$$I=1007$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.
In particular,
$$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$
Relabel the $u$ as $x$, then, adding the integrals together, we get
$$2I = int_0^2014 1 ,dx$$
which gives you the result.
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
add a comment |Â
up vote
5
down vote
accepted
Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.
In particular,
$$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$
Relabel the $u$ as $x$, then, adding the integrals together, we get
$$2I = int_0^2014 1 ,dx$$
which gives you the result.
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.
In particular,
$$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$
Relabel the $u$ as $x$, then, adding the integrals together, we get
$$2I = int_0^2014 1 ,dx$$
which gives you the result.
Let $I = int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$. Then, as you said, consider the substitution $u = 2014 - x$.
In particular,
$$I = int_2014^0 fracsqrtusqrt2014 - u + sqrtu cdot (-1) ,du = int_0^2014 fracsqrtusqrt2014 - u + sqrtu ,du$$
Relabel the $u$ as $x$, then, adding the integrals together, we get
$$2I = int_0^2014 1 ,dx$$
which gives you the result.
answered Sep 7 at 8:40
Alvin Jin
1,967718
1,967718
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
add a comment |Â
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
Why can't I see it! Thank you.
â nik
Sep 7 at 8:54
add a comment |Â
up vote
5
down vote
If you substitute $x mapsto 2014-x$, you get
$$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
Hence
beginalign
1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
&= frac12(I+I) = I.
endalign
add a comment |Â
up vote
5
down vote
If you substitute $x mapsto 2014-x$, you get
$$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
Hence
beginalign
1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
&= frac12(I+I) = I.
endalign
add a comment |Â
up vote
5
down vote
up vote
5
down vote
If you substitute $x mapsto 2014-x$, you get
$$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
Hence
beginalign
1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
&= frac12(I+I) = I.
endalign
If you substitute $x mapsto 2014-x$, you get
$$ I = int_0^2014 fracsqrt2014-xsqrtx + sqrt2014-x , dx = int_0^2014 fracsqrtxsqrtx + sqrt2014-x , dx. $$
Hence
beginalign
1007 &= frac12int_0^2014 dx = frac12int_0^2014fracsqrt2014-xsqrtx + sqrt2014-x + fracsqrtxsqrtx + sqrt2014-x , dx\
&= frac12(I+I) = I.
endalign
edited Sep 7 at 8:47
answered Sep 7 at 8:40
Sobi
2,855517
2,855517
add a comment |Â
add a comment |Â
up vote
3
down vote
$$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$
add a comment |Â
up vote
3
down vote
$$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
$$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$
$$let int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=A \ put 2014-x=u \ implies int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx=int_2014^0fracsqrtusqrtu+sqrt2014-u(-du)\=int_0^2014fracsqrtusqrtu+sqrt2014-u(du)=A \ add both integrals implies 2(A)=int_0^2014dx implies A=1007$$
edited Sep 7 at 9:27
answered Sep 7 at 8:45
Subhajit Halder
1039
1039
add a comment |Â
add a comment |Â
up vote
0
down vote
Don't need to do that substitution again and again just apply this formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$
Apply the formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$
add both integrals
$$2I=int_0^2014dx$$
$$2I=2014$$
$$I=1007$$
add a comment |Â
up vote
0
down vote
Don't need to do that substitution again and again just apply this formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$
Apply the formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$
add both integrals
$$2I=int_0^2014dx$$
$$2I=2014$$
$$I=1007$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Don't need to do that substitution again and again just apply this formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$
Apply the formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$
add both integrals
$$2I=int_0^2014dx$$
$$2I=2014$$
$$I=1007$$
Don't need to do that substitution again and again just apply this formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$I=int_0^2014fracsqrt2014-xsqrtx+sqrt2014-xdx$$
Apply the formula
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
$$ I=int_0^2014fracsqrt2014-(2014+0-x)sqrt2014+0-x+sqrt2014-(2014+0-x)dx=int_0^2014fracsqrt xsqrt2014-x+sqrtxdx$$
add both integrals
$$2I=int_0^2014dx$$
$$2I=2014$$
$$I=1007$$
answered Sep 7 at 10:01
Deepesh Meena
4,0162925
4,0162925
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908398%2fintegral-of-int-02014-frac-sqrt2014-x-sqrtx-sqrt2014-xdx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password