Find a Fourier series to represent the function exp(x) for x belongs to (-pi,pi) and hence derive pi/sinh(pi).
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.
Unable to derive the pi over sinh(pi) part...how do I do it?
fourier-series
add a comment |Â
up vote
0
down vote
favorite
Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.
Unable to derive the pi over sinh(pi) part...how do I do it?
fourier-series
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.
Unable to derive the pi over sinh(pi) part...how do I do it?
fourier-series
Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.
Unable to derive the pi over sinh(pi) part...how do I do it?
fourier-series
fourier-series
edited Sep 9 at 7:41
MR ASSASSINS117
3758
3758
asked Sep 7 at 4:13
Krishna Deshmukh
146
146
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44
add a comment |Â
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$
add a comment |Â
up vote
0
down vote
Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$
Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$
answered Sep 7 at 5:07
Nosrati
22.6k61748
22.6k61748
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908257%2ffind-a-fourier-series-to-represent-the-function-expx-for-x-belongs-to-pi-pi%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
First: Use MathJax. Second, show us the Fourier series you got.
â amsmath
Sep 7 at 4:17
I do not know how to use mathjax.
â Krishna Deshmukh
Sep 7 at 7:44