Find a Fourier series to represent the function exp(x) for x belongs to (-pi,pi) and hence derive pi/sinh(pi).

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.



Unable to derive the pi over sinh(pi) part...how do I do it?










share|cite|improve this question























  • First: Use MathJax. Second, show us the Fourier series you got.
    – amsmath
    Sep 7 at 4:17










  • I do not know how to use mathjax.
    – Krishna Deshmukh
    Sep 7 at 7:44














up vote
0
down vote

favorite












Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.



Unable to derive the pi over sinh(pi) part...how do I do it?










share|cite|improve this question























  • First: Use MathJax. Second, show us the Fourier series you got.
    – amsmath
    Sep 7 at 4:17










  • I do not know how to use mathjax.
    – Krishna Deshmukh
    Sep 7 at 7:44












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.



Unable to derive the pi over sinh(pi) part...how do I do it?










share|cite|improve this question















Find a Fourier series to represent the function exp(x) for x belongs to $(-pi, pi)$ and hence derive $fracpisinh(pi)$.



Unable to derive the pi over sinh(pi) part...how do I do it?







fourier-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 9 at 7:41









MR ASSASSINS117

3758




3758










asked Sep 7 at 4:13









Krishna Deshmukh

146




146











  • First: Use MathJax. Second, show us the Fourier series you got.
    – amsmath
    Sep 7 at 4:17










  • I do not know how to use mathjax.
    – Krishna Deshmukh
    Sep 7 at 7:44
















  • First: Use MathJax. Second, show us the Fourier series you got.
    – amsmath
    Sep 7 at 4:17










  • I do not know how to use mathjax.
    – Krishna Deshmukh
    Sep 7 at 7:44















First: Use MathJax. Second, show us the Fourier series you got.
– amsmath
Sep 7 at 4:17




First: Use MathJax. Second, show us the Fourier series you got.
– amsmath
Sep 7 at 4:17












I do not know how to use mathjax.
– Krishna Deshmukh
Sep 7 at 7:44




I do not know how to use mathjax.
– Krishna Deshmukh
Sep 7 at 7:44










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Hint:
Find
$$a_0=dfrac1piint_-pi^pi e^x dx$$
$$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
$$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
then
$$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908257%2ffind-a-fourier-series-to-represent-the-function-expx-for-x-belongs-to-pi-pi%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Hint:
    Find
    $$a_0=dfrac1piint_-pi^pi e^x dx$$
    $$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
    $$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
    then
    $$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$






    share|cite|improve this answer
























      up vote
      0
      down vote













      Hint:
      Find
      $$a_0=dfrac1piint_-pi^pi e^x dx$$
      $$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
      $$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
      then
      $$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$






      share|cite|improve this answer






















        up vote
        0
        down vote










        up vote
        0
        down vote









        Hint:
        Find
        $$a_0=dfrac1piint_-pi^pi e^x dx$$
        $$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
        $$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
        then
        $$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$






        share|cite|improve this answer












        Hint:
        Find
        $$a_0=dfrac1piint_-pi^pi e^x dx$$
        $$a_n=dfrac1piint_-pi^pi e^xcos(nx) dx$$
        $$b_n=dfrac1piint_-pi^pi e^xsin(nx) dx$$
        then
        $$S(f)(x)=frac12a_0+sum_n=1^inftya_ncos(nx)+b_nsin(nx)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 7 at 5:07









        Nosrati

        22.6k61748




        22.6k61748



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908257%2ffind-a-fourier-series-to-represent-the-function-expx-for-x-belongs-to-pi-pi%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?