brownian motion - covariance in two independent brownian motions

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
$text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$



My attempt:



$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$



$hspace2mm$



Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$



$rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.



I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.










share|cite|improve this question



























    up vote
    0
    down vote

    favorite












    $text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
    $text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$



    My attempt:



    $operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
    rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
    rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$



    $hspace2mm$



    Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$



    $rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.



    I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.










    share|cite|improve this question

























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      $text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
      $text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$



      My attempt:



      $operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
      rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
      rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$



      $hspace2mm$



      Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$



      $rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.



      I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.










      share|cite|improve this question















      $text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
      $text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$



      My attempt:



      $operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
      rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
      rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$



      $hspace2mm$



      Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$



      $rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.



      I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.







      probability stochastic-calculus brownian-motion






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 7 at 9:59

























      asked Sep 7 at 9:52









      gariban17

      153




      153




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.






          share|cite|improve this answer




















          • Of course. I feel so dumb right now. Thanks a lot.
            – gariban17
            Sep 7 at 10:07










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908461%2fbrownian-motion-covariance-in-two-independent-brownian-motions%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote



          accepted










          You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.






          share|cite|improve this answer




















          • Of course. I feel so dumb right now. Thanks a lot.
            – gariban17
            Sep 7 at 10:07














          up vote
          0
          down vote



          accepted










          You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.






          share|cite|improve this answer




















          • Of course. I feel so dumb right now. Thanks a lot.
            – gariban17
            Sep 7 at 10:07












          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.






          share|cite|improve this answer












          You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 7 at 10:05









          Kavi Rama Murthy

          26.7k31438




          26.7k31438











          • Of course. I feel so dumb right now. Thanks a lot.
            – gariban17
            Sep 7 at 10:07
















          • Of course. I feel so dumb right now. Thanks a lot.
            – gariban17
            Sep 7 at 10:07















          Of course. I feel so dumb right now. Thanks a lot.
          – gariban17
          Sep 7 at 10:07




          Of course. I feel so dumb right now. Thanks a lot.
          – gariban17
          Sep 7 at 10:07

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908461%2fbrownian-motion-covariance-in-two-independent-brownian-motions%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?