brownian motion - covariance in two independent brownian motions
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
$text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$
My attempt:
$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$
$hspace2mm$
Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$
$rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.
I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.
probability stochastic-calculus brownian-motion
add a comment |Â
up vote
0
down vote
favorite
$text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
$text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$
My attempt:
$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$
$hspace2mm$
Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$
$rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.
I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.
probability stochastic-calculus brownian-motion
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
$text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$
My attempt:
$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$
$hspace2mm$
Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$
$rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.
I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.
probability stochastic-calculus brownian-motion
$text Let W text and widetilde W text be two independent Brownian motion and rho text is a constant in (0,1).$
$text For all t geq 0 , text let X _ t = rho W _ t + sqrt 1 - rho ^ 2 widetilde W _ t text and forall t geq 0 , X _ t sim N ( 0 , t ).$ Show: $$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = 0$$
My attempt:
$operatorname Cov left[ X _ t _ 2 - X _ t _ 1 ; X _ t _ 4 - X _ t _ 3 right] = \ operatorname Cov left[ rho left( W _ t _ 2 - W _ t _ 1 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 2 - widetilde W _ t _ 1 right) ; rho left( W _ t _ 4 - W _ t _ 3 right) + sqrt 1 - rho ^ 2 left( widetilde W _ t _ 4 - widetilde W _ t _ 3 right) right] = \
rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] + \
rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right]$
$hspace2mm$
Now, I know $rho sqrt 1 - rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] = 0$ and $rho sqrt 1 - rho ^ 2 operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] = 0$ because of independence between $W$ and $widetilde W$. But I get troubles showing the last two terms is zero. Assume $t_2 - t_1 < t_4 - t_3:$
$rho ^ 2 operatorname Cov left[ W _ t _ 2 - W _ t _ 1 ; W _ t _ 4 - W _ t _ 3 right] + left( 1 - rho ^ 2 right) operatorname Cov left[ widetilde W _ t _ 2 - widetilde W _ t _ 4 ; widetilde W _ t _ 4 - widetilde W _ t _ 3 right] =\ t_2 - t_1 (rho^2 + (1 - rho^2)) = t_2 - t_1$.
I dont't know what I did wrong. I made my calculations several times, and I dont think I did anything wrong. Any help is appreciated.
probability stochastic-calculus brownian-motion
probability stochastic-calculus brownian-motion
edited Sep 7 at 9:59
asked Sep 7 at 9:52
gariban17
153
153
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
add a comment |Â
up vote
0
down vote
accepted
You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.
You did not state what the $t_i$ 's are. I think this result is for $t_1<t_2<t_3<t_4$. If that is the case then $Cov(W_t_2-W_t_1;W_t_4-W_t_3)=0$ by independence. Similarly for $widetilde W$.
answered Sep 7 at 10:05
Kavi Rama Murthy
26.7k31438
26.7k31438
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
add a comment |Â
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
Of course. I feel so dumb right now. Thanks a lot.
â gariban17
Sep 7 at 10:07
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2908461%2fbrownian-motion-covariance-in-two-independent-brownian-motions%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password