Show that the series converges and find its sum [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
This question already has an answer here:
Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?
5 answers
Show that
$$ sum_n=1^infty left( frac1n(n+1) right) = frac12+frac16+frac112+ ;... $$
converges and find its sum.
My solution so far:
I am thinking about finding the partial sum first and show that the series converges since its finite partial sum converges.
Now
$$ S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=frac12+frac16+frac112+;...= left( frac11-frac12 right)+left( frac12-frac13 right) + ;...+ left( frac1N-frac1N+1 right)$$
but I don't know how to go on with this. Now $ lim_N toinfty left( frac1N-frac1N+1 right)=0$ but the right answer should be $1$.
calculus sequences-and-series convergence telescopic-series
marked as duplicate by Simply Beautiful Art
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Sep 8 at 13:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
3
down vote
favorite
This question already has an answer here:
Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?
5 answers
Show that
$$ sum_n=1^infty left( frac1n(n+1) right) = frac12+frac16+frac112+ ;... $$
converges and find its sum.
My solution so far:
I am thinking about finding the partial sum first and show that the series converges since its finite partial sum converges.
Now
$$ S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=frac12+frac16+frac112+;...= left( frac11-frac12 right)+left( frac12-frac13 right) + ;...+ left( frac1N-frac1N+1 right)$$
but I don't know how to go on with this. Now $ lim_N toinfty left( frac1N-frac1N+1 right)=0$ but the right answer should be $1$.
calculus sequences-and-series convergence telescopic-series
marked as duplicate by Simply Beautiful Art
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Sep 8 at 13:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
This question already has an answer here:
Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?
5 answers
Show that
$$ sum_n=1^infty left( frac1n(n+1) right) = frac12+frac16+frac112+ ;... $$
converges and find its sum.
My solution so far:
I am thinking about finding the partial sum first and show that the series converges since its finite partial sum converges.
Now
$$ S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=frac12+frac16+frac112+;...= left( frac11-frac12 right)+left( frac12-frac13 right) + ;...+ left( frac1N-frac1N+1 right)$$
but I don't know how to go on with this. Now $ lim_N toinfty left( frac1N-frac1N+1 right)=0$ but the right answer should be $1$.
calculus sequences-and-series convergence telescopic-series
This question already has an answer here:
Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?
5 answers
Show that
$$ sum_n=1^infty left( frac1n(n+1) right) = frac12+frac16+frac112+ ;... $$
converges and find its sum.
My solution so far:
I am thinking about finding the partial sum first and show that the series converges since its finite partial sum converges.
Now
$$ S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=frac12+frac16+frac112+;...= left( frac11-frac12 right)+left( frac12-frac13 right) + ;...+ left( frac1N-frac1N+1 right)$$
but I don't know how to go on with this. Now $ lim_N toinfty left( frac1N-frac1N+1 right)=0$ but the right answer should be $1$.
This question already has an answer here:
Sum of an infinite series $(1 - frac 12) + (frac 12 - frac 13) + cdots$ - not geometric series?
5 answers
calculus sequences-and-series convergence telescopic-series
calculus sequences-and-series convergence telescopic-series
edited Sep 8 at 13:49
Simply Beautiful Art
49.5k575178
49.5k575178
asked Sep 8 at 10:48
Zoë
1285
1285
marked as duplicate by Simply Beautiful Art
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Sep 8 at 13:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Simply Beautiful Art
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Sep 8 at 13:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52
add a comment |Â
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
3
down vote
accepted
You're right that in the end $$lim_Nrightarrowinftyleft(frac1N-frac1N+1right)=0$$ But this is not the sum itself, for this, note that $$left(frac11-frac12right)+left(frac12-frac13right)+left(frac13-frac14right)+dots\=1+left(-frac12+frac12right)+left(-frac13+frac13right)+dots$$
add a comment |Â
up vote
1
down vote
You can use the Cauchy condensation test to show convergence:
$$sum_n=1^infty frac2^n2^n(2^n+1) = sum_n=1^infty frac12^n+1 le sum_n=1^infty frac12^n = 1$$
because the latter is a geometric series.
Hence $displaystylesum_n=1^infty frac1n(n+1)$ also converges.
add a comment |Â
up vote
0
down vote
See the first two brackets. $-frac12$ in the first bracket and $frac12$ in the second bracket cancel each other out. This canceling happens all through out.
add a comment |Â
up vote
0
down vote
The partial sum must be:
$$S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=\
frac12+frac16+frac112+;...colorredfrac1N-frac1N+1= \
left( colorbluefrac11-requirecancelcancelfrac12 right)+left( cancelfrac12-cancelfrac13 right) + ;...+ left( cancelfrac1N-colorbluefrac1N+1 right)=\
colorblue1-colorbluefrac1N+1$$
Hence:
$$lim_Ntoinfty S_N=lim_Ntoinfty left(1-frac1N+1right)=1.$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
You're right that in the end $$lim_Nrightarrowinftyleft(frac1N-frac1N+1right)=0$$ But this is not the sum itself, for this, note that $$left(frac11-frac12right)+left(frac12-frac13right)+left(frac13-frac14right)+dots\=1+left(-frac12+frac12right)+left(-frac13+frac13right)+dots$$
add a comment |Â
up vote
3
down vote
accepted
You're right that in the end $$lim_Nrightarrowinftyleft(frac1N-frac1N+1right)=0$$ But this is not the sum itself, for this, note that $$left(frac11-frac12right)+left(frac12-frac13right)+left(frac13-frac14right)+dots\=1+left(-frac12+frac12right)+left(-frac13+frac13right)+dots$$
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
You're right that in the end $$lim_Nrightarrowinftyleft(frac1N-frac1N+1right)=0$$ But this is not the sum itself, for this, note that $$left(frac11-frac12right)+left(frac12-frac13right)+left(frac13-frac14right)+dots\=1+left(-frac12+frac12right)+left(-frac13+frac13right)+dots$$
You're right that in the end $$lim_Nrightarrowinftyleft(frac1N-frac1N+1right)=0$$ But this is not the sum itself, for this, note that $$left(frac11-frac12right)+left(frac12-frac13right)+left(frac13-frac14right)+dots\=1+left(-frac12+frac12right)+left(-frac13+frac13right)+dots$$
answered Sep 8 at 10:52
cansomeonehelpmeout
5,6233830
5,6233830
add a comment |Â
add a comment |Â
up vote
1
down vote
You can use the Cauchy condensation test to show convergence:
$$sum_n=1^infty frac2^n2^n(2^n+1) = sum_n=1^infty frac12^n+1 le sum_n=1^infty frac12^n = 1$$
because the latter is a geometric series.
Hence $displaystylesum_n=1^infty frac1n(n+1)$ also converges.
add a comment |Â
up vote
1
down vote
You can use the Cauchy condensation test to show convergence:
$$sum_n=1^infty frac2^n2^n(2^n+1) = sum_n=1^infty frac12^n+1 le sum_n=1^infty frac12^n = 1$$
because the latter is a geometric series.
Hence $displaystylesum_n=1^infty frac1n(n+1)$ also converges.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
You can use the Cauchy condensation test to show convergence:
$$sum_n=1^infty frac2^n2^n(2^n+1) = sum_n=1^infty frac12^n+1 le sum_n=1^infty frac12^n = 1$$
because the latter is a geometric series.
Hence $displaystylesum_n=1^infty frac1n(n+1)$ also converges.
You can use the Cauchy condensation test to show convergence:
$$sum_n=1^infty frac2^n2^n(2^n+1) = sum_n=1^infty frac12^n+1 le sum_n=1^infty frac12^n = 1$$
because the latter is a geometric series.
Hence $displaystylesum_n=1^infty frac1n(n+1)$ also converges.
answered Sep 8 at 13:22
mechanodroid
24.6k62245
24.6k62245
add a comment |Â
add a comment |Â
up vote
0
down vote
See the first two brackets. $-frac12$ in the first bracket and $frac12$ in the second bracket cancel each other out. This canceling happens all through out.
add a comment |Â
up vote
0
down vote
See the first two brackets. $-frac12$ in the first bracket and $frac12$ in the second bracket cancel each other out. This canceling happens all through out.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
See the first two brackets. $-frac12$ in the first bracket and $frac12$ in the second bracket cancel each other out. This canceling happens all through out.
See the first two brackets. $-frac12$ in the first bracket and $frac12$ in the second bracket cancel each other out. This canceling happens all through out.
answered Sep 8 at 13:13
ê°Âì¹ÃÂÂ
304
304
add a comment |Â
add a comment |Â
up vote
0
down vote
The partial sum must be:
$$S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=\
frac12+frac16+frac112+;...colorredfrac1N-frac1N+1= \
left( colorbluefrac11-requirecancelcancelfrac12 right)+left( cancelfrac12-cancelfrac13 right) + ;...+ left( cancelfrac1N-colorbluefrac1N+1 right)=\
colorblue1-colorbluefrac1N+1$$
Hence:
$$lim_Ntoinfty S_N=lim_Ntoinfty left(1-frac1N+1right)=1.$$
add a comment |Â
up vote
0
down vote
The partial sum must be:
$$S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=\
frac12+frac16+frac112+;...colorredfrac1N-frac1N+1= \
left( colorbluefrac11-requirecancelcancelfrac12 right)+left( cancelfrac12-cancelfrac13 right) + ;...+ left( cancelfrac1N-colorbluefrac1N+1 right)=\
colorblue1-colorbluefrac1N+1$$
Hence:
$$lim_Ntoinfty S_N=lim_Ntoinfty left(1-frac1N+1right)=1.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
The partial sum must be:
$$S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=\
frac12+frac16+frac112+;...colorredfrac1N-frac1N+1= \
left( colorbluefrac11-requirecancelcancelfrac12 right)+left( cancelfrac12-cancelfrac13 right) + ;...+ left( cancelfrac1N-colorbluefrac1N+1 right)=\
colorblue1-colorbluefrac1N+1$$
Hence:
$$lim_Ntoinfty S_N=lim_Ntoinfty left(1-frac1N+1right)=1.$$
The partial sum must be:
$$S_N=sum_n=1^N left( frac1n(n+1) right)=sum_n=1^N left( frac1n-frac1n+1 right)=\
frac12+frac16+frac112+;...colorredfrac1N-frac1N+1= \
left( colorbluefrac11-requirecancelcancelfrac12 right)+left( cancelfrac12-cancelfrac13 right) + ;...+ left( cancelfrac1N-colorbluefrac1N+1 right)=\
colorblue1-colorbluefrac1N+1$$
Hence:
$$lim_Ntoinfty S_N=lim_Ntoinfty left(1-frac1N+1right)=1.$$
answered Sep 8 at 13:49
farruhota
15.6k2734
15.6k2734
add a comment |Â
add a comment |Â
Hint: telescopic series.
â Gabriel Romon
Sep 8 at 10:52