For what values of $x$ in $(-3,17)$ does the series $sumlimits^infty_n=1frac(-1)^n x^nn[log (n+1)]^2$ converge?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
For what values of $x$ in the following series, does the series converge?
beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign
MY TRIAL
beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.
When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$
I'm I right? Constructive criticisms will be highly welcome! Thanks!
real-analysis sequences-and-series analysis convergence power-series
 |Â
show 4 more comments
up vote
3
down vote
favorite
For what values of $x$ in the following series, does the series converge?
beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign
MY TRIAL
beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.
When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$
I'm I right? Constructive criticisms will be highly welcome! Thanks!
real-analysis sequences-and-series analysis convergence power-series
For me it's right
â Atmos
Sep 8 at 7:36
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46
 |Â
show 4 more comments
up vote
3
down vote
favorite
up vote
3
down vote
favorite
For what values of $x$ in the following series, does the series converge?
beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign
MY TRIAL
beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.
When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$
I'm I right? Constructive criticisms will be highly welcome! Thanks!
real-analysis sequences-and-series analysis convergence power-series
For what values of $x$ in the following series, does the series converge?
beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign
MY TRIAL
beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.
When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$
I'm I right? Constructive criticisms will be highly welcome! Thanks!
real-analysis sequences-and-series analysis convergence power-series
real-analysis sequences-and-series analysis convergence power-series
edited Sep 8 at 13:37
Did
243k23209444
243k23209444
asked Sep 8 at 7:18
Micheal
25010
25010
For me it's right
â Atmos
Sep 8 at 7:36
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46
 |Â
show 4 more comments
For me it's right
â Atmos
Sep 8 at 7:36
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46
For me it's right
â Atmos
Sep 8 at 7:36
For me it's right
â Atmos
Sep 8 at 7:36
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46
 |Â
show 4 more comments
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
You are correct. This is a "variation on the theme".
For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.
For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
add a comment |Â
up vote
1
down vote
Yes it is correct, for the limit from here we can proceed as follow
$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
You are correct. This is a "variation on the theme".
For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.
For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
add a comment |Â
up vote
2
down vote
accepted
You are correct. This is a "variation on the theme".
For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.
For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
You are correct. This is a "variation on the theme".
For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.
For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$
You are correct. This is a "variation on the theme".
For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.
For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$
answered Sep 8 at 7:42
Robert Z
85.8k1056124
85.8k1056124
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
add a comment |Â
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
Thanks, I'm grateful!
â Micheal
Sep 8 at 7:44
add a comment |Â
up vote
1
down vote
Yes it is correct, for the limit from here we can proceed as follow
$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
add a comment |Â
up vote
1
down vote
Yes it is correct, for the limit from here we can proceed as follow
$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Yes it is correct, for the limit from here we can proceed as follow
$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$
Yes it is correct, for the limit from here we can proceed as follow
$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$
answered Sep 8 at 7:42
gimusi
74.1k73889
74.1k73889
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
add a comment |Â
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
Thanks a lot! I appreciate!
â Micheal
Sep 8 at 7:45
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909367%2ffor-what-values-of-x-in-3-17-does-the-series-sum-limits-infty-n-1%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
For me it's right
â Atmos
Sep 8 at 7:36
Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
â Nicolas FRANCOIS
Sep 8 at 7:40
@Nicolas FRANCOIS: Smiles...
â Micheal
Sep 8 at 7:41
@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
â Micheal
Sep 8 at 7:42
@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
â Micheal
Sep 8 at 7:46