Calculate $int fracx^4+1x^12-1 dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












So I found this problem:




Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$




and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?










share|cite|improve this question

















  • 2




    You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
    – Kusma
    Sep 8 at 10:19










  • $x^12 = (x^4)^3$ ?
    – BCLC
    Sep 8 at 10:32














up vote
4
down vote

favorite
1












So I found this problem:




Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$




and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?










share|cite|improve this question

















  • 2




    You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
    – Kusma
    Sep 8 at 10:19










  • $x^12 = (x^4)^3$ ?
    – BCLC
    Sep 8 at 10:32












up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





So I found this problem:




Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$




and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?










share|cite|improve this question













So I found this problem:




Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$




and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?







calculus integration indefinite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 8 at 10:13









razvanelda

767116




767116







  • 2




    You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
    – Kusma
    Sep 8 at 10:19










  • $x^12 = (x^4)^3$ ?
    – BCLC
    Sep 8 at 10:32












  • 2




    You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
    – Kusma
    Sep 8 at 10:19










  • $x^12 = (x^4)^3$ ?
    – BCLC
    Sep 8 at 10:32







2




2




You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
– Kusma
Sep 8 at 10:19




You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
– Kusma
Sep 8 at 10:19












$x^12 = (x^4)^3$ ?
– BCLC
Sep 8 at 10:32




$x^12 = (x^4)^3$ ?
– BCLC
Sep 8 at 10:32










2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










You can use that $$x^4+1=(x^2+1)^2-2x^2=…$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$






share|cite|improve this answer



























    up vote
    5
    down vote













    Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
    $$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$



    Apply partial Factor decomposition you get



    $$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
    $$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$






    share|cite|improve this answer






















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909484%2fcalculate-int-fracx41x12-1-dx%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote



      accepted










      You can use that $$x^4+1=(x^2+1)^2-2x^2=…$$
      You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
      left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
      (x-1)-frac16 (x+1)$$






      share|cite|improve this answer
























        up vote
        4
        down vote



        accepted










        You can use that $$x^4+1=(x^2+1)^2-2x^2=…$$
        You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
        left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
        (x-1)-frac16 (x+1)$$






        share|cite|improve this answer






















          up vote
          4
          down vote



          accepted







          up vote
          4
          down vote



          accepted






          You can use that $$x^4+1=(x^2+1)^2-2x^2=…$$
          You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
          left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
          (x-1)-frac16 (x+1)$$






          share|cite|improve this answer












          You can use that $$x^4+1=(x^2+1)^2-2x^2=…$$
          You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
          left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
          (x-1)-frac16 (x+1)$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 8 at 10:15









          Dr. Sonnhard Graubner

          69k32761




          69k32761




















              up vote
              5
              down vote













              Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
              $$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$



              Apply partial Factor decomposition you get



              $$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
              $$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$






              share|cite|improve this answer


























                up vote
                5
                down vote













                Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
                $$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$



                Apply partial Factor decomposition you get



                $$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
                $$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$






                share|cite|improve this answer
























                  up vote
                  5
                  down vote










                  up vote
                  5
                  down vote









                  Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
                  $$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$



                  Apply partial Factor decomposition you get



                  $$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
                  $$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$






                  share|cite|improve this answer














                  Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
                  $$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$



                  Apply partial Factor decomposition you get



                  $$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
                  $$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Sep 15 at 0:13

























                  answered Sep 8 at 10:50









                  Deepesh Meena

                  4,12121025




                  4,12121025



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909484%2fcalculate-int-fracx41x12-1-dx%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?