Calculate $int fracx^4+1x^12-1 dx$
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
So I found this problem:
Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$
and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?
calculus integration indefinite-integrals
add a comment |Â
up vote
4
down vote
favorite
So I found this problem:
Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$
and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?
calculus integration indefinite-integrals
2
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
So I found this problem:
Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$
and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?
calculus integration indefinite-integrals
So I found this problem:
Calculate $$int fracx^4+1x^12-1 dx$$ where $xin(1, +infty)$
and I don't have any ideea how to solve it. I tried to write $$x^12-1=(x^6+1)(x+1)(x-1)(x^2+x+1)(x^2-x+1)$$ but with $x^4+1$ I had no idea what to do, an obvious thing would be to add some terms (an $x^5$ would be helpful) and then discard them, but again I couldn't do anything. What should I do?
calculus integration indefinite-integrals
calculus integration indefinite-integrals
asked Sep 8 at 10:13
razvanelda
767116
767116
2
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32
add a comment |Â
2
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32
2
2
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
You can use that $$x^4+1=(x^2+1)^2-2x^2=â¦$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$
add a comment |Â
up vote
5
down vote
Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
$$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$
Apply partial Factor decomposition you get
$$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
$$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
You can use that $$x^4+1=(x^2+1)^2-2x^2=â¦$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$
add a comment |Â
up vote
4
down vote
accepted
You can use that $$x^4+1=(x^2+1)^2-2x^2=â¦$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
You can use that $$x^4+1=(x^2+1)^2-2x^2=â¦$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$
You can use that $$x^4+1=(x^2+1)^2-2x^2=â¦$$
You will get $$fracx^4+1x^12-1=frac-2 x-112 left(x^2+x+1right)-frac13 left(x^2+1right)+frac2 x-112
left(x^2-x+1right)+frac-x^2-16 left(x^4-x^2+1right)+frac16
(x-1)-frac16 (x+1)$$
answered Sep 8 at 10:15
Dr. Sonnhard Graubner
69k32761
69k32761
add a comment |Â
add a comment |Â
up vote
5
down vote
Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
$$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$
Apply partial Factor decomposition you get
$$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
$$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$
add a comment |Â
up vote
5
down vote
Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
$$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$
Apply partial Factor decomposition you get
$$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
$$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$
add a comment |Â
up vote
5
down vote
up vote
5
down vote
Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
$$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$
Apply partial Factor decomposition you get
$$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
$$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$
Use $$x^6+1=(x^2+1)(x^4-x^2+1)$$
$$I=displaystyleintdfracx^4+1left(x-1right)left(x+1right)left(x^2+1right)left(x^2-x+1right)left(x^2+x+1right)left(x^4-x^2+1right),mathrmdx$$
Apply partial Factor decomposition you get
$$I=displaystyleintleft(-dfracx^2+16left(x^4-x^2+1right)-dfrac2x+112left(x^2+x+1right)+dfrac2x-112left(x^2-x+1right)-dfrac13left(x^2+1right)-dfrac16left(x+1right)+dfrac16left(x-1right)right)mathrmdx$$
$$I=-classsteps-nodecssIdsteps-node-1dfrac16displaystyleintdfracx^2+1x^4-x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-2dfrac112displaystyleintdfrac2x+1x^2+x+1,mathrmdx+classsteps-nodecssIdsteps-node-3dfrac112displaystyleintdfrac2x-1x^2-x+1,mathrmdx-classsteps-nodecssIdsteps-node-4dfrac13displaystyleintdfrac1x^2+1,mathrmdx-classsteps-nodecssIdsteps-node-5dfrac16displaystyleintdfrac1x+1,mathrmdx+classsteps-nodecssIdsteps-node-6dfrac16displaystyleintdfrac1x-1,mathrmdx$$
edited Sep 15 at 0:13
answered Sep 8 at 10:50
Deepesh Meena
4,12121025
4,12121025
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909484%2fcalculate-int-fracx41x12-1-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
You can factor $x^6+1=(x^2+1)(x^4-x^2+1)$.
â Kusma
Sep 8 at 10:19
$x^12 = (x^4)^3$ ?
â BCLC
Sep 8 at 10:32