For what values of $x$ in $(-3,17)$ does the series $sumlimits^infty_n=1frac(-1)^n x^nn[log (n+1)]^2$ converge?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1












For what values of $x$ in the following series, does the series converge?



beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign



MY TRIAL



beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.



When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$



I'm I right? Constructive criticisms will be highly welcome! Thanks!










share|cite|improve this question























  • For me it's right
    – Atmos
    Sep 8 at 7:36










  • Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
    – Nicolas FRANCOIS
    Sep 8 at 7:40










  • @Nicolas FRANCOIS: Smiles...
    – Micheal
    Sep 8 at 7:41










  • @Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
    – Micheal
    Sep 8 at 7:42











  • @Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
    – Micheal
    Sep 8 at 7:46














up vote
3
down vote

favorite
1












For what values of $x$ in the following series, does the series converge?



beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign



MY TRIAL



beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.



When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$



I'm I right? Constructive criticisms will be highly welcome! Thanks!










share|cite|improve this question























  • For me it's right
    – Atmos
    Sep 8 at 7:36










  • Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
    – Nicolas FRANCOIS
    Sep 8 at 7:40










  • @Nicolas FRANCOIS: Smiles...
    – Micheal
    Sep 8 at 7:41










  • @Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
    – Micheal
    Sep 8 at 7:42











  • @Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
    – Micheal
    Sep 8 at 7:46












up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





For what values of $x$ in the following series, does the series converge?



beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign



MY TRIAL



beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.



When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$



I'm I right? Constructive criticisms will be highly welcome! Thanks!










share|cite|improve this question















For what values of $x$ in the following series, does the series converge?



beginalignsum^infty_n=1dfrac(-1)^n x^nn[log (n+1)]^2,;;-3<x<17 endalign



MY TRIAL



beginalignlimlimits_nto inftyleft|dfrac(-1)^n+1 x^n+1(n+1)[log (n+2)]^2cdotdfracn[log (n+1)]^2(-1)^n x^nright|&=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotlimlimits_nto inftyleft[dfraclog (n+1)log (n+2)right]^2\&=|x|limlimits_nto inftyleft(dfracnn+1right)cdotleft[limlimits_nto inftydfraclog (n+1)log (n+2)right]^2\&=|x|left[limlimits_nto inftydfrac1n+1cdot n+2right]^2\&=|x|endalign
Hence, the series converges absolutely for $|x|<1$ and diverges when $|x|>1$.



When $x=1,$
beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2<infty;;textBy Alternating series testendalign
When $x=-1,$
beginalignsum^infty_n=1dfrac1n[log (n+1)]^2<infty;;textBy Direct comparison testendalign
Hence, the values of $x$ for which the series converges, is $-1leq xleq 1.$



I'm I right? Constructive criticisms will be highly welcome! Thanks!







real-analysis sequences-and-series analysis convergence power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 8 at 13:37









Did

243k23209444




243k23209444










asked Sep 8 at 7:18









Micheal

25010




25010











  • For me it's right
    – Atmos
    Sep 8 at 7:36










  • Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
    – Nicolas FRANCOIS
    Sep 8 at 7:40










  • @Nicolas FRANCOIS: Smiles...
    – Micheal
    Sep 8 at 7:41










  • @Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
    – Micheal
    Sep 8 at 7:42











  • @Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
    – Micheal
    Sep 8 at 7:46
















  • For me it's right
    – Atmos
    Sep 8 at 7:36










  • Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
    – Nicolas FRANCOIS
    Sep 8 at 7:40










  • @Nicolas FRANCOIS: Smiles...
    – Micheal
    Sep 8 at 7:41










  • @Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
    – Micheal
    Sep 8 at 7:42











  • @Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
    – Micheal
    Sep 8 at 7:46















For me it's right
– Atmos
Sep 8 at 7:36




For me it's right
– Atmos
Sep 8 at 7:36












Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
– Nicolas FRANCOIS
Sep 8 at 7:40




Fine for me too. I just wouldn't speak of alternating series test, because the series is in fact absolutely convergent. Why use a precision tool when you can use a hammer ? :-)
– Nicolas FRANCOIS
Sep 8 at 7:40












@Nicolas FRANCOIS: Smiles...
– Micheal
Sep 8 at 7:41




@Nicolas FRANCOIS: Smiles...
– Micheal
Sep 8 at 7:41












@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
– Micheal
Sep 8 at 7:42





@Nicolas FRANCOIS:You mean the series beginalignsum^infty_n=1dfrac(-1)^n n[log (n+1)]^2endalign converges absolutely for $x=1?$ How?
– Micheal
Sep 8 at 7:42













@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
– Micheal
Sep 8 at 7:46




@Nicolas FRANCOIS:: Oh, I see! Robert Z has cleared my confusion! Thanks!
– Micheal
Sep 8 at 7:46










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










You are correct. This is a "variation on the theme".



For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.



For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$






share|cite|improve this answer




















  • Thanks, I'm grateful!
    – Micheal
    Sep 8 at 7:44

















up vote
1
down vote













Yes it is correct, for the limit from here we can proceed as follow



$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$






share|cite|improve this answer




















  • Thanks a lot! I appreciate!
    – Micheal
    Sep 8 at 7:45










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909367%2ffor-what-values-of-x-in-3-17-does-the-series-sum-limits-infty-n-1%23new-answer', 'question_page');

);

Post as a guest






























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










You are correct. This is a "variation on the theme".



For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.



For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$






share|cite|improve this answer




















  • Thanks, I'm grateful!
    – Micheal
    Sep 8 at 7:44














up vote
2
down vote



accepted










You are correct. This is a "variation on the theme".



For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.



For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$






share|cite|improve this answer




















  • Thanks, I'm grateful!
    – Micheal
    Sep 8 at 7:44












up vote
2
down vote



accepted







up vote
2
down vote



accepted






You are correct. This is a "variation on the theme".



For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.



For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$






share|cite|improve this answer












You are correct. This is a "variation on the theme".



For $|x|>1$
$$lim_nto +inftydfrac^nn[log (n+1)]^2=+infty$$
and the series is divergent.



For $|x|leq 1$, by direct comparison, the series is absolutely convergent
$$sum^infty_n=1dfrac^nn[log (n+1)]^2leq sum^infty_n=1dfrac1n[log (n+1)]^2<infty.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Sep 8 at 7:42









Robert Z

85.8k1056124




85.8k1056124











  • Thanks, I'm grateful!
    – Micheal
    Sep 8 at 7:44
















  • Thanks, I'm grateful!
    – Micheal
    Sep 8 at 7:44















Thanks, I'm grateful!
– Micheal
Sep 8 at 7:44




Thanks, I'm grateful!
– Micheal
Sep 8 at 7:44










up vote
1
down vote













Yes it is correct, for the limit from here we can proceed as follow



$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$






share|cite|improve this answer




















  • Thanks a lot! I appreciate!
    – Micheal
    Sep 8 at 7:45














up vote
1
down vote













Yes it is correct, for the limit from here we can proceed as follow



$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$






share|cite|improve this answer




















  • Thanks a lot! I appreciate!
    – Micheal
    Sep 8 at 7:45












up vote
1
down vote










up vote
1
down vote









Yes it is correct, for the limit from here we can proceed as follow



$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$






share|cite|improve this answer












Yes it is correct, for the limit from here we can proceed as follow



$$ldots=|x|limlimits_nto inftyleft|dfracnn+1cdotleft[dfraclog (n+1)log (n+2)right]^2right|
=|x|limlimits_nto inftydfrac11+1/ncdotleft[dfraclog n+log (1+1/n)log n+log (1+2/n)right]^2=|x|cdot1=|x|$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Sep 8 at 7:42









gimusi

74.2k73889




74.2k73889











  • Thanks a lot! I appreciate!
    – Micheal
    Sep 8 at 7:45
















  • Thanks a lot! I appreciate!
    – Micheal
    Sep 8 at 7:45















Thanks a lot! I appreciate!
– Micheal
Sep 8 at 7:45




Thanks a lot! I appreciate!
– Micheal
Sep 8 at 7:45

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2909367%2ffor-what-values-of-x-in-3-17-does-the-series-sum-limits-infty-n-1%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?