The section of the enveloping cone of the ellipsoid whose vertex is $P$, by the plane $z=0$ is a parabola. Find the locus of $P$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$
This meets the plane $z=0$ then
$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$
I don't know after this some one plz help.
geometry
add a comment |Â
up vote
0
down vote
favorite
The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$
This meets the plane $z=0$ then
$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$
I don't know after this some one plz help.
geometry
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$
This meets the plane $z=0$ then
$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$
I don't know after this some one plz help.
geometry
The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$
This meets the plane $z=0$ then
$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$
I don't know after this some one plz help.
geometry
edited Aug 14 at 19:39
Ng Chung Tak
13k31131
13k31131
asked Aug 12 at 5:47
bharathi b
62
62
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23
add a comment |Â
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Rewrite the conic as
$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$
For parabola,
$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$
The equation for $P$ is
$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$
$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$
$$fbox$z^2=c^2$$$
providing $dfracx^2a^2+dfracy^2b^2>0$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Rewrite the conic as
$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$
For parabola,
$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$
The equation for $P$ is
$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$
$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$
$$fbox$z^2=c^2$$$
providing $dfracx^2a^2+dfracy^2b^2>0$.
add a comment |Â
up vote
0
down vote
Rewrite the conic as
$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$
For parabola,
$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$
The equation for $P$ is
$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$
$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$
$$fbox$z^2=c^2$$$
providing $dfracx^2a^2+dfracy^2b^2>0$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Rewrite the conic as
$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$
For parabola,
$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$
The equation for $P$ is
$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$
$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$
$$fbox$z^2=c^2$$$
providing $dfracx^2a^2+dfracy^2b^2>0$.
Rewrite the conic as
$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$
For parabola,
$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$
The equation for $P$ is
$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$
$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$
$$fbox$z^2=c^2$$$
providing $dfracx^2a^2+dfracy^2b^2>0$.
edited Aug 17 at 20:47
answered Aug 14 at 20:22
Ng Chung Tak
13k31131
13k31131
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880013%2fthe-section-of-the-enveloping-cone-of-the-ellipsoid-whose-vertex-is-p-by-the%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Recall the relationship that the cone and plane must have for the section to be a parabola.
â amd
Aug 12 at 8:23