The section of the enveloping cone of the ellipsoid whose vertex is $P$, by the plane $z=0$ is a parabola. Find the locus of $P$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$



This meets the plane $z=0$ then



$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$



I don't know after this some one plz help.







share|cite|improve this question






















  • Recall the relationship that the cone and plane must have for the section to be a parabola.
    – amd
    Aug 12 at 8:23














up vote
0
down vote

favorite












The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$



This meets the plane $z=0$ then



$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$



I don't know after this some one plz help.







share|cite|improve this question






















  • Recall the relationship that the cone and plane must have for the section to be a parabola.
    – amd
    Aug 12 at 8:23












up vote
0
down vote

favorite









up vote
0
down vote

favorite











The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$



This meets the plane $z=0$ then



$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$



I don't know after this some one plz help.







share|cite|improve this question














The given ellipsoid is $dfracx^2a^2+dfracy^2b^2+dfracz^2c^2=1$
And the vertex be $P(x_1,y_1,z_1)$
Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$.
That is,
$$
left(
fracx^2a^2+fracy^2b^2+fracz^2c^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left( fracxx_1a^2+fracyy_1b^2+fraczz_1c^2-1
right)^2$$



This meets the plane $z=0$ then



$$
left(
fracx^2a^2+fracy^2b^2-1
right)
left(
fracx_1^2a^2+fracy_1^2b^2+fracz_1^2c^2-1
right)=
left(
fracxx_1a^2+fracyy_1b^2-1
right)^2$$



I don't know after this some one plz help.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 14 at 19:39









Ng Chung Tak

13k31131




13k31131










asked Aug 12 at 5:47









bharathi b

62




62











  • Recall the relationship that the cone and plane must have for the section to be a parabola.
    – amd
    Aug 12 at 8:23
















  • Recall the relationship that the cone and plane must have for the section to be a parabola.
    – amd
    Aug 12 at 8:23















Recall the relationship that the cone and plane must have for the section to be a parabola.
– amd
Aug 12 at 8:23




Recall the relationship that the cone and plane must have for the section to be a parabola.
– amd
Aug 12 at 8:23










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Rewrite the conic as



$$
beginpmatrix
x & y & 1
endpmatrix
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 &
fracx_1a^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
fracy_1b^2 \
fracx_1a^2 &
fracy_1b^2 &
-fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
endpmatrix
beginpmatrix
x \ y \ 1
endpmatrix=0$$



For parabola,



$$det
beginpmatrix
frac1a^2
left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
-fracx_1 y_1a^2 b^2 \
-fracx_1 y_1a^2 b^2 &
frac1b^2
left( fracx_1^2a^2+fracz_1^2c^2-1 right)
endpmatrix
=0$$



The equation for $P$ is



$$
frac1a^2b^2
left( fracy^2b^2+fracz^2c^2-1 right)
left( fracx^2a^2+fracz^2c^2-1 right)-
left( fracxya^2 b^2 right)^2=0$$



$$frac(z^2-c^2)a^2 b^2 c^2
left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
=0$$



$$fbox$z^2=c^2$$$



providing $dfracx^2a^2+dfracy^2b^2>0$.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880013%2fthe-section-of-the-enveloping-cone-of-the-ellipsoid-whose-vertex-is-p-by-the%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Rewrite the conic as



    $$
    beginpmatrix
    x & y & 1
    endpmatrix
    beginpmatrix
    frac1a^2
    left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
    -fracx_1 y_1a^2 b^2 &
    fracx_1a^2 \
    -fracx_1 y_1a^2 b^2 &
    frac1b^2
    left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
    fracy_1b^2 \
    fracx_1a^2 &
    fracy_1b^2 &
    -fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
    endpmatrix
    beginpmatrix
    x \ y \ 1
    endpmatrix=0$$



    For parabola,



    $$det
    beginpmatrix
    frac1a^2
    left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
    -fracx_1 y_1a^2 b^2 \
    -fracx_1 y_1a^2 b^2 &
    frac1b^2
    left( fracx_1^2a^2+fracz_1^2c^2-1 right)
    endpmatrix
    =0$$



    The equation for $P$ is



    $$
    frac1a^2b^2
    left( fracy^2b^2+fracz^2c^2-1 right)
    left( fracx^2a^2+fracz^2c^2-1 right)-
    left( fracxya^2 b^2 right)^2=0$$



    $$frac(z^2-c^2)a^2 b^2 c^2
    left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
    =0$$



    $$fbox$z^2=c^2$$$



    providing $dfracx^2a^2+dfracy^2b^2>0$.






    share|cite|improve this answer


























      up vote
      0
      down vote













      Rewrite the conic as



      $$
      beginpmatrix
      x & y & 1
      endpmatrix
      beginpmatrix
      frac1a^2
      left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
      -fracx_1 y_1a^2 b^2 &
      fracx_1a^2 \
      -fracx_1 y_1a^2 b^2 &
      frac1b^2
      left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
      fracy_1b^2 \
      fracx_1a^2 &
      fracy_1b^2 &
      -fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
      endpmatrix
      beginpmatrix
      x \ y \ 1
      endpmatrix=0$$



      For parabola,



      $$det
      beginpmatrix
      frac1a^2
      left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
      -fracx_1 y_1a^2 b^2 \
      -fracx_1 y_1a^2 b^2 &
      frac1b^2
      left( fracx_1^2a^2+fracz_1^2c^2-1 right)
      endpmatrix
      =0$$



      The equation for $P$ is



      $$
      frac1a^2b^2
      left( fracy^2b^2+fracz^2c^2-1 right)
      left( fracx^2a^2+fracz^2c^2-1 right)-
      left( fracxya^2 b^2 right)^2=0$$



      $$frac(z^2-c^2)a^2 b^2 c^2
      left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
      =0$$



      $$fbox$z^2=c^2$$$



      providing $dfracx^2a^2+dfracy^2b^2>0$.






      share|cite|improve this answer
























        up vote
        0
        down vote










        up vote
        0
        down vote









        Rewrite the conic as



        $$
        beginpmatrix
        x & y & 1
        endpmatrix
        beginpmatrix
        frac1a^2
        left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
        -fracx_1 y_1a^2 b^2 &
        fracx_1a^2 \
        -fracx_1 y_1a^2 b^2 &
        frac1b^2
        left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
        fracy_1b^2 \
        fracx_1a^2 &
        fracy_1b^2 &
        -fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
        endpmatrix
        beginpmatrix
        x \ y \ 1
        endpmatrix=0$$



        For parabola,



        $$det
        beginpmatrix
        frac1a^2
        left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
        -fracx_1 y_1a^2 b^2 \
        -fracx_1 y_1a^2 b^2 &
        frac1b^2
        left( fracx_1^2a^2+fracz_1^2c^2-1 right)
        endpmatrix
        =0$$



        The equation for $P$ is



        $$
        frac1a^2b^2
        left( fracy^2b^2+fracz^2c^2-1 right)
        left( fracx^2a^2+fracz^2c^2-1 right)-
        left( fracxya^2 b^2 right)^2=0$$



        $$frac(z^2-c^2)a^2 b^2 c^2
        left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
        =0$$



        $$fbox$z^2=c^2$$$



        providing $dfracx^2a^2+dfracy^2b^2>0$.






        share|cite|improve this answer














        Rewrite the conic as



        $$
        beginpmatrix
        x & y & 1
        endpmatrix
        beginpmatrix
        frac1a^2
        left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
        -fracx_1 y_1a^2 b^2 &
        fracx_1a^2 \
        -fracx_1 y_1a^2 b^2 &
        frac1b^2
        left( fracx_1^2a^2+fracz_1^2c^2-1 right) &
        fracy_1b^2 \
        fracx_1a^2 &
        fracy_1b^2 &
        -fracx_1^2a^2-fracy_1^2b^2-fracz_1^2c^2
        endpmatrix
        beginpmatrix
        x \ y \ 1
        endpmatrix=0$$



        For parabola,



        $$det
        beginpmatrix
        frac1a^2
        left( fracy_1^2b^2+fracz_1^2c^2-1 right) &
        -fracx_1 y_1a^2 b^2 \
        -fracx_1 y_1a^2 b^2 &
        frac1b^2
        left( fracx_1^2a^2+fracz_1^2c^2-1 right)
        endpmatrix
        =0$$



        The equation for $P$ is



        $$
        frac1a^2b^2
        left( fracy^2b^2+fracz^2c^2-1 right)
        left( fracx^2a^2+fracz^2c^2-1 right)-
        left( fracxya^2 b^2 right)^2=0$$



        $$frac(z^2-c^2)a^2 b^2 c^2
        left( fracx^2a^2+fracy^2b^2+fracz^2c^2-1 right)
        =0$$



        $$fbox$z^2=c^2$$$



        providing $dfracx^2a^2+dfracy^2b^2>0$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 17 at 20:47

























        answered Aug 14 at 20:22









        Ng Chung Tak

        13k31131




        13k31131






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880013%2fthe-section-of-the-enveloping-cone-of-the-ellipsoid-whose-vertex-is-p-by-the%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?