Evalutating an indefinit integral

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













How can I evaluate the following integral?
$$
intfraccosx1+sin2x dx
$$




I tried the following way, but I was not able to proceed further:
$$
begingather
I&=intfraccosxleft(sinx+cosxright)^2 dx\
&= intfracsecxleft(1+tanxright)^2 dx
endgather
$$







share|cite|improve this question






















  • Hope you'll satisty with the solution.
    – Arpit Yadav
    Aug 12 at 3:01














up vote
0
down vote

favorite













How can I evaluate the following integral?
$$
intfraccosx1+sin2x dx
$$




I tried the following way, but I was not able to proceed further:
$$
begingather
I&=intfraccosxleft(sinx+cosxright)^2 dx\
&= intfracsecxleft(1+tanxright)^2 dx
endgather
$$







share|cite|improve this question






















  • Hope you'll satisty with the solution.
    – Arpit Yadav
    Aug 12 at 3:01












up vote
0
down vote

favorite









up vote
0
down vote

favorite












How can I evaluate the following integral?
$$
intfraccosx1+sin2x dx
$$




I tried the following way, but I was not able to proceed further:
$$
begingather
I&=intfraccosxleft(sinx+cosxright)^2 dx\
&= intfracsecxleft(1+tanxright)^2 dx
endgather
$$







share|cite|improve this question















How can I evaluate the following integral?
$$
intfraccosx1+sin2x dx
$$




I tried the following way, but I was not able to proceed further:
$$
begingather
I&=intfraccosxleft(sinx+cosxright)^2 dx\
&= intfracsecxleft(1+tanxright)^2 dx
endgather
$$









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 12 at 1:42









Math Lover

12.5k21232




12.5k21232










asked Aug 12 at 0:17









Hussien Mohamed

634112




634112











  • Hope you'll satisty with the solution.
    – Arpit Yadav
    Aug 12 at 3:01
















  • Hope you'll satisty with the solution.
    – Arpit Yadav
    Aug 12 at 3:01















Hope you'll satisty with the solution.
– Arpit Yadav
Aug 12 at 3:01




Hope you'll satisty with the solution.
– Arpit Yadav
Aug 12 at 3:01










2 Answers
2






active

oldest

votes

















up vote
2
down vote













Hint:



Write numerator as $$2cos x=cos x+sin x +(cos x-sin x)$$






share|cite|improve this answer



























    up vote
    0
    down vote













    Using lab bhattacharjee result,$$I=int fraccos x+ sin x(cos x+ sin x)^2dxspace +int fraccos x-sin x(cos x+sin x)^2dx$$
    $$I=I_1+I_2$$
    $$I_1=int frac1cos x+sin xdx$$
    $$I_1=intfrac1sqrt2(cos xcdotcosfracpi4+sin xcdot sinfracpi4)dx$$
    $$I_1=intfracsec(x-pi/4)sqrt2dx$$
    $$I_1=frac1sqrt2cdotln[(sec(x-pi/4)+tan(x-pi/4)]+C_1$$
    Now$$I_2=int fraccos x-sin x(cos x+sin x)^2dx$$
    $$sin x+cos x=timplies(cos x-sin x)dx=dt$$
    $$I_2=intfrac 1t^2space dt$$
    $$I_2=-frac1t+C_2=-frac1sin x+cos x+C_2$$






    share|cite|improve this answer






















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2879871%2fevalutating-an-indefinit-integral%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote













      Hint:



      Write numerator as $$2cos x=cos x+sin x +(cos x-sin x)$$






      share|cite|improve this answer
























        up vote
        2
        down vote













        Hint:



        Write numerator as $$2cos x=cos x+sin x +(cos x-sin x)$$






        share|cite|improve this answer






















          up vote
          2
          down vote










          up vote
          2
          down vote









          Hint:



          Write numerator as $$2cos x=cos x+sin x +(cos x-sin x)$$






          share|cite|improve this answer












          Hint:



          Write numerator as $$2cos x=cos x+sin x +(cos x-sin x)$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 12 at 1:34









          lab bhattacharjee

          215k14152264




          215k14152264




















              up vote
              0
              down vote













              Using lab bhattacharjee result,$$I=int fraccos x+ sin x(cos x+ sin x)^2dxspace +int fraccos x-sin x(cos x+sin x)^2dx$$
              $$I=I_1+I_2$$
              $$I_1=int frac1cos x+sin xdx$$
              $$I_1=intfrac1sqrt2(cos xcdotcosfracpi4+sin xcdot sinfracpi4)dx$$
              $$I_1=intfracsec(x-pi/4)sqrt2dx$$
              $$I_1=frac1sqrt2cdotln[(sec(x-pi/4)+tan(x-pi/4)]+C_1$$
              Now$$I_2=int fraccos x-sin x(cos x+sin x)^2dx$$
              $$sin x+cos x=timplies(cos x-sin x)dx=dt$$
              $$I_2=intfrac 1t^2space dt$$
              $$I_2=-frac1t+C_2=-frac1sin x+cos x+C_2$$






              share|cite|improve this answer


























                up vote
                0
                down vote













                Using lab bhattacharjee result,$$I=int fraccos x+ sin x(cos x+ sin x)^2dxspace +int fraccos x-sin x(cos x+sin x)^2dx$$
                $$I=I_1+I_2$$
                $$I_1=int frac1cos x+sin xdx$$
                $$I_1=intfrac1sqrt2(cos xcdotcosfracpi4+sin xcdot sinfracpi4)dx$$
                $$I_1=intfracsec(x-pi/4)sqrt2dx$$
                $$I_1=frac1sqrt2cdotln[(sec(x-pi/4)+tan(x-pi/4)]+C_1$$
                Now$$I_2=int fraccos x-sin x(cos x+sin x)^2dx$$
                $$sin x+cos x=timplies(cos x-sin x)dx=dt$$
                $$I_2=intfrac 1t^2space dt$$
                $$I_2=-frac1t+C_2=-frac1sin x+cos x+C_2$$






                share|cite|improve this answer
























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Using lab bhattacharjee result,$$I=int fraccos x+ sin x(cos x+ sin x)^2dxspace +int fraccos x-sin x(cos x+sin x)^2dx$$
                  $$I=I_1+I_2$$
                  $$I_1=int frac1cos x+sin xdx$$
                  $$I_1=intfrac1sqrt2(cos xcdotcosfracpi4+sin xcdot sinfracpi4)dx$$
                  $$I_1=intfracsec(x-pi/4)sqrt2dx$$
                  $$I_1=frac1sqrt2cdotln[(sec(x-pi/4)+tan(x-pi/4)]+C_1$$
                  Now$$I_2=int fraccos x-sin x(cos x+sin x)^2dx$$
                  $$sin x+cos x=timplies(cos x-sin x)dx=dt$$
                  $$I_2=intfrac 1t^2space dt$$
                  $$I_2=-frac1t+C_2=-frac1sin x+cos x+C_2$$






                  share|cite|improve this answer














                  Using lab bhattacharjee result,$$I=int fraccos x+ sin x(cos x+ sin x)^2dxspace +int fraccos x-sin x(cos x+sin x)^2dx$$
                  $$I=I_1+I_2$$
                  $$I_1=int frac1cos x+sin xdx$$
                  $$I_1=intfrac1sqrt2(cos xcdotcosfracpi4+sin xcdot sinfracpi4)dx$$
                  $$I_1=intfracsec(x-pi/4)sqrt2dx$$
                  $$I_1=frac1sqrt2cdotln[(sec(x-pi/4)+tan(x-pi/4)]+C_1$$
                  Now$$I_2=int fraccos x-sin x(cos x+sin x)^2dx$$
                  $$sin x+cos x=timplies(cos x-sin x)dx=dt$$
                  $$I_2=intfrac 1t^2space dt$$
                  $$I_2=-frac1t+C_2=-frac1sin x+cos x+C_2$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Aug 12 at 3:00

























                  answered Aug 12 at 2:54









                  Arpit Yadav

                  331215




                  331215






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2879871%2fevalutating-an-indefinit-integral%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?