If a curve is expressed in cylindrical coords., then is the coefficient of the basis vector that corresponds to the angular variable necessarily zero?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Spherical surface $mathbf S : x^2 + y^2 + z^2 =1 ~$; Cylindrical suface $ mathbf C : x^2 + (y-0.5)^2 = 0.25 $



Let $~ mathbf S cap mathbf C = mathbf K (t)$. Then $ mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T . $ Actually $ mathbf K$ parameterizes only half of $mathbf S cap mathbf C $, but for now, that is not important. The goal is to express $mathbf K$ in cylindrical coordinates. The cylindrical coordinates $mathbf r (mathbf x) $ corresponding to the cartesian coordinates $mathbf x$ are generally $$ mathbf r(mathbf x) = left[rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right]^mathsf T = left [ sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ]^mathsf T .$$
Therefore $$mathbf r (mathbf K (t)) = left [ sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ]^mathsf T . $$



Also:
$hat mathbf h_rho = left[ cos phi ~~ sin phi ~~ 0 right]^mathsf T$ ; $hat mathbf h_phi = left[ -sin phi ~~ cos phi ~~ 0 right]^mathsf T $ ; $hat mathbf h_z = left[ 0 ~~ 0 ~~ 1 right]^mathsf T $



$$cos (phi (mathbf K (t))) = cos left(arctan left( fracsqrt1-t^2t right) right) = frac1sqrt1+ left( fracsqrt1-t^2t right)^2 = t $$



$$sin (phi (mathbf K (t))) = fracsqrt1-t^2t ~~ cos left(arctan left( fracsqrt1-t^2t right) right) = sqrt1-t^2$$



Then
$$ left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right]_mathbf r (mathbf K(t)) = left[
beginmatrix
t & -sqrt1-t^2 & 0 \
sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right]
$$



The curve $mathbf K$ expressed in cylindrical coordinates therefore is:
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[
beginmatrix
sqrt1- t^2 \
arctan fracsqrt1-t^2t \
t \
endmatrix right ] = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[beginmatrix f_1(t) \ g(t) \ f_2 (t) endmatrix right].$$



Now here is the problem:
$g(t) = t^2 + t arctan left ( fracsqrt1-t^2t right) -1 neq 0$. I think that the coefficient of $hat mathbf h_phi$, in the correct expression of $~ mathbf S cap mathbf C $, in cylindrical coordinates, is necessarily zero. If somebody can tell me where I made an error that caused the result $g(t) neq 0$, or if they can prove or otherwise convince me that $g(t)$ is not necessarily zero, then I will set this question to a resolved state.







share|cite|improve this question


















  • 1




    Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
    – Paul Sinclair
    Aug 12 at 14:40










  • Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
    – EricVonB
    Aug 14 at 13:40














up vote
0
down vote

favorite












Spherical surface $mathbf S : x^2 + y^2 + z^2 =1 ~$; Cylindrical suface $ mathbf C : x^2 + (y-0.5)^2 = 0.25 $



Let $~ mathbf S cap mathbf C = mathbf K (t)$. Then $ mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T . $ Actually $ mathbf K$ parameterizes only half of $mathbf S cap mathbf C $, but for now, that is not important. The goal is to express $mathbf K$ in cylindrical coordinates. The cylindrical coordinates $mathbf r (mathbf x) $ corresponding to the cartesian coordinates $mathbf x$ are generally $$ mathbf r(mathbf x) = left[rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right]^mathsf T = left [ sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ]^mathsf T .$$
Therefore $$mathbf r (mathbf K (t)) = left [ sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ]^mathsf T . $$



Also:
$hat mathbf h_rho = left[ cos phi ~~ sin phi ~~ 0 right]^mathsf T$ ; $hat mathbf h_phi = left[ -sin phi ~~ cos phi ~~ 0 right]^mathsf T $ ; $hat mathbf h_z = left[ 0 ~~ 0 ~~ 1 right]^mathsf T $



$$cos (phi (mathbf K (t))) = cos left(arctan left( fracsqrt1-t^2t right) right) = frac1sqrt1+ left( fracsqrt1-t^2t right)^2 = t $$



$$sin (phi (mathbf K (t))) = fracsqrt1-t^2t ~~ cos left(arctan left( fracsqrt1-t^2t right) right) = sqrt1-t^2$$



Then
$$ left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right]_mathbf r (mathbf K(t)) = left[
beginmatrix
t & -sqrt1-t^2 & 0 \
sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right]
$$



The curve $mathbf K$ expressed in cylindrical coordinates therefore is:
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[
beginmatrix
sqrt1- t^2 \
arctan fracsqrt1-t^2t \
t \
endmatrix right ] = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[beginmatrix f_1(t) \ g(t) \ f_2 (t) endmatrix right].$$



Now here is the problem:
$g(t) = t^2 + t arctan left ( fracsqrt1-t^2t right) -1 neq 0$. I think that the coefficient of $hat mathbf h_phi$, in the correct expression of $~ mathbf S cap mathbf C $, in cylindrical coordinates, is necessarily zero. If somebody can tell me where I made an error that caused the result $g(t) neq 0$, or if they can prove or otherwise convince me that $g(t)$ is not necessarily zero, then I will set this question to a resolved state.







share|cite|improve this question


















  • 1




    Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
    – Paul Sinclair
    Aug 12 at 14:40










  • Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
    – EricVonB
    Aug 14 at 13:40












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Spherical surface $mathbf S : x^2 + y^2 + z^2 =1 ~$; Cylindrical suface $ mathbf C : x^2 + (y-0.5)^2 = 0.25 $



Let $~ mathbf S cap mathbf C = mathbf K (t)$. Then $ mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T . $ Actually $ mathbf K$ parameterizes only half of $mathbf S cap mathbf C $, but for now, that is not important. The goal is to express $mathbf K$ in cylindrical coordinates. The cylindrical coordinates $mathbf r (mathbf x) $ corresponding to the cartesian coordinates $mathbf x$ are generally $$ mathbf r(mathbf x) = left[rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right]^mathsf T = left [ sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ]^mathsf T .$$
Therefore $$mathbf r (mathbf K (t)) = left [ sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ]^mathsf T . $$



Also:
$hat mathbf h_rho = left[ cos phi ~~ sin phi ~~ 0 right]^mathsf T$ ; $hat mathbf h_phi = left[ -sin phi ~~ cos phi ~~ 0 right]^mathsf T $ ; $hat mathbf h_z = left[ 0 ~~ 0 ~~ 1 right]^mathsf T $



$$cos (phi (mathbf K (t))) = cos left(arctan left( fracsqrt1-t^2t right) right) = frac1sqrt1+ left( fracsqrt1-t^2t right)^2 = t $$



$$sin (phi (mathbf K (t))) = fracsqrt1-t^2t ~~ cos left(arctan left( fracsqrt1-t^2t right) right) = sqrt1-t^2$$



Then
$$ left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right]_mathbf r (mathbf K(t)) = left[
beginmatrix
t & -sqrt1-t^2 & 0 \
sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right]
$$



The curve $mathbf K$ expressed in cylindrical coordinates therefore is:
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[
beginmatrix
sqrt1- t^2 \
arctan fracsqrt1-t^2t \
t \
endmatrix right ] = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[beginmatrix f_1(t) \ g(t) \ f_2 (t) endmatrix right].$$



Now here is the problem:
$g(t) = t^2 + t arctan left ( fracsqrt1-t^2t right) -1 neq 0$. I think that the coefficient of $hat mathbf h_phi$, in the correct expression of $~ mathbf S cap mathbf C $, in cylindrical coordinates, is necessarily zero. If somebody can tell me where I made an error that caused the result $g(t) neq 0$, or if they can prove or otherwise convince me that $g(t)$ is not necessarily zero, then I will set this question to a resolved state.







share|cite|improve this question














Spherical surface $mathbf S : x^2 + y^2 + z^2 =1 ~$; Cylindrical suface $ mathbf C : x^2 + (y-0.5)^2 = 0.25 $



Let $~ mathbf S cap mathbf C = mathbf K (t)$. Then $ mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T . $ Actually $ mathbf K$ parameterizes only half of $mathbf S cap mathbf C $, but for now, that is not important. The goal is to express $mathbf K$ in cylindrical coordinates. The cylindrical coordinates $mathbf r (mathbf x) $ corresponding to the cartesian coordinates $mathbf x$ are generally $$ mathbf r(mathbf x) = left[rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right]^mathsf T = left [ sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ]^mathsf T .$$
Therefore $$mathbf r (mathbf K (t)) = left [ sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ]^mathsf T . $$



Also:
$hat mathbf h_rho = left[ cos phi ~~ sin phi ~~ 0 right]^mathsf T$ ; $hat mathbf h_phi = left[ -sin phi ~~ cos phi ~~ 0 right]^mathsf T $ ; $hat mathbf h_z = left[ 0 ~~ 0 ~~ 1 right]^mathsf T $



$$cos (phi (mathbf K (t))) = cos left(arctan left( fracsqrt1-t^2t right) right) = frac1sqrt1+ left( fracsqrt1-t^2t right)^2 = t $$



$$sin (phi (mathbf K (t))) = fracsqrt1-t^2t ~~ cos left(arctan left( fracsqrt1-t^2t right) right) = sqrt1-t^2$$



Then
$$ left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right]_mathbf r (mathbf K(t)) = left[
beginmatrix
t & -sqrt1-t^2 & 0 \
sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right]
$$



The curve $mathbf K$ expressed in cylindrical coordinates therefore is:
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[
beginmatrix
sqrt1- t^2 \
arctan fracsqrt1-t^2t \
t \
endmatrix right ] = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[beginmatrix f_1(t) \ g(t) \ f_2 (t) endmatrix right].$$



Now here is the problem:
$g(t) = t^2 + t arctan left ( fracsqrt1-t^2t right) -1 neq 0$. I think that the coefficient of $hat mathbf h_phi$, in the correct expression of $~ mathbf S cap mathbf C $, in cylindrical coordinates, is necessarily zero. If somebody can tell me where I made an error that caused the result $g(t) neq 0$, or if they can prove or otherwise convince me that $g(t)$ is not necessarily zero, then I will set this question to a resolved state.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 12 at 1:32

























asked Aug 12 at 1:24









EricVonB

1139




1139







  • 1




    Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
    – Paul Sinclair
    Aug 12 at 14:40










  • Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
    – EricVonB
    Aug 14 at 13:40












  • 1




    Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
    – Paul Sinclair
    Aug 12 at 14:40










  • Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
    – EricVonB
    Aug 14 at 13:40







1




1




Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
– Paul Sinclair
Aug 12 at 14:40




Why in the world would you think that the coefficient of $hat mathbf h_phi$ would be $0$? If it were $0$, then $mathbf K$ would lie entirely in a single $rtext- z$ plane, which it obviously does not do.
– Paul Sinclair
Aug 12 at 14:40












Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
– EricVonB
Aug 14 at 13:40




Good point. Maybe the derivative of $mathbf K$ has non-zero coefficient of $hat mathbf h_phi $ therefore the curve itself spans some non-constant range of $phi$. I am not totally sure.
– EricVonB
Aug 14 at 13:40










1 Answer
1






active

oldest

votes

















up vote
0
down vote













As stated in the original post, the goal is to express $mathbf K$ in cylindrical coordinates. $$mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T ~~;~~ -1 le t le 1 $$



$$mathbf r(mathbf x) = left(rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right) = left ( sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ) .$$



$$mathbf r (mathbf K (t)) = left ( sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ) .$$



$$left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right]_mathbf r (mathbf K(t)) = left[
beginmatrix
t & -sqrt1-t^2 & 0 \
sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right]$$



The following statement is false.
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[
beginmatrix
sqrt1- t^2 \
arctan fracsqrt1-t^2t \
t \
endmatrix right ].$$



The following statement is true.
$$mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
t & sqrt1-t^2 & 0 \
-sqrt1-t^2 & t & 0 \
0 & 0 & 1 \
endmatrix
right] left[ beginmatrix t sqrt 1-t^2 \ 1-t^2 \ t endmatrix right] . $$



$mathbf K$ expressed in cylindrical coordinates is
$$ mathbf K (t) = left[
beginmatrix
hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
endmatrix right] left[
beginmatrix
sqrt1-t^2 \
0 \
t \
endmatrix
right] .$$



QED






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2879895%2fif-a-curve-is-expressed-in-cylindrical-coords-then-is-the-coefficient-of-the-b%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    As stated in the original post, the goal is to express $mathbf K$ in cylindrical coordinates. $$mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T ~~;~~ -1 le t le 1 $$



    $$mathbf r(mathbf x) = left(rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right) = left ( sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ) .$$



    $$mathbf r (mathbf K (t)) = left ( sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ) .$$



    $$left[
    beginmatrix
    hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
    endmatrix right]_mathbf r (mathbf K(t)) = left[
    beginmatrix
    t & -sqrt1-t^2 & 0 \
    sqrt1-t^2 & t & 0 \
    0 & 0 & 1 \
    endmatrix
    right]$$



    The following statement is false.
    $$mathbf K (t) = left[
    beginmatrix
    hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
    endmatrix right] left[
    beginmatrix
    t & sqrt1-t^2 & 0 \
    -sqrt1-t^2 & t & 0 \
    0 & 0 & 1 \
    endmatrix
    right] left[
    beginmatrix
    sqrt1- t^2 \
    arctan fracsqrt1-t^2t \
    t \
    endmatrix right ].$$



    The following statement is true.
    $$mathbf K (t) = left[
    beginmatrix
    hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
    endmatrix right] left[
    beginmatrix
    t & sqrt1-t^2 & 0 \
    -sqrt1-t^2 & t & 0 \
    0 & 0 & 1 \
    endmatrix
    right] left[ beginmatrix t sqrt 1-t^2 \ 1-t^2 \ t endmatrix right] . $$



    $mathbf K$ expressed in cylindrical coordinates is
    $$ mathbf K (t) = left[
    beginmatrix
    hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
    endmatrix right] left[
    beginmatrix
    sqrt1-t^2 \
    0 \
    t \
    endmatrix
    right] .$$



    QED






    share|cite|improve this answer
























      up vote
      0
      down vote













      As stated in the original post, the goal is to express $mathbf K$ in cylindrical coordinates. $$mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T ~~;~~ -1 le t le 1 $$



      $$mathbf r(mathbf x) = left(rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right) = left ( sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ) .$$



      $$mathbf r (mathbf K (t)) = left ( sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ) .$$



      $$left[
      beginmatrix
      hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
      endmatrix right]_mathbf r (mathbf K(t)) = left[
      beginmatrix
      t & -sqrt1-t^2 & 0 \
      sqrt1-t^2 & t & 0 \
      0 & 0 & 1 \
      endmatrix
      right]$$



      The following statement is false.
      $$mathbf K (t) = left[
      beginmatrix
      hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
      endmatrix right] left[
      beginmatrix
      t & sqrt1-t^2 & 0 \
      -sqrt1-t^2 & t & 0 \
      0 & 0 & 1 \
      endmatrix
      right] left[
      beginmatrix
      sqrt1- t^2 \
      arctan fracsqrt1-t^2t \
      t \
      endmatrix right ].$$



      The following statement is true.
      $$mathbf K (t) = left[
      beginmatrix
      hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
      endmatrix right] left[
      beginmatrix
      t & sqrt1-t^2 & 0 \
      -sqrt1-t^2 & t & 0 \
      0 & 0 & 1 \
      endmatrix
      right] left[ beginmatrix t sqrt 1-t^2 \ 1-t^2 \ t endmatrix right] . $$



      $mathbf K$ expressed in cylindrical coordinates is
      $$ mathbf K (t) = left[
      beginmatrix
      hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
      endmatrix right] left[
      beginmatrix
      sqrt1-t^2 \
      0 \
      t \
      endmatrix
      right] .$$



      QED






      share|cite|improve this answer






















        up vote
        0
        down vote










        up vote
        0
        down vote









        As stated in the original post, the goal is to express $mathbf K$ in cylindrical coordinates. $$mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T ~~;~~ -1 le t le 1 $$



        $$mathbf r(mathbf x) = left(rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right) = left ( sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ) .$$



        $$mathbf r (mathbf K (t)) = left ( sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ) .$$



        $$left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right]_mathbf r (mathbf K(t)) = left[
        beginmatrix
        t & -sqrt1-t^2 & 0 \
        sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right]$$



        The following statement is false.
        $$mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        t & sqrt1-t^2 & 0 \
        -sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right] left[
        beginmatrix
        sqrt1- t^2 \
        arctan fracsqrt1-t^2t \
        t \
        endmatrix right ].$$



        The following statement is true.
        $$mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        t & sqrt1-t^2 & 0 \
        -sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right] left[ beginmatrix t sqrt 1-t^2 \ 1-t^2 \ t endmatrix right] . $$



        $mathbf K$ expressed in cylindrical coordinates is
        $$ mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        sqrt1-t^2 \
        0 \
        t \
        endmatrix
        right] .$$



        QED






        share|cite|improve this answer












        As stated in the original post, the goal is to express $mathbf K$ in cylindrical coordinates. $$mathbf K(t) = left[ t sqrt 1-t^2 ~~~~ 1-t^2 ~~~~ t right]^mathsf T ~~;~~ -1 le t le 1 $$



        $$mathbf r(mathbf x) = left(rho(mathbf x) ~~~~ phi(mathbf x) ~~~~z(mathbf x) right) = left ( sqrtx^2 + y^2 ~~~ arctan fracyx ~~~ z right ) .$$



        $$mathbf r (mathbf K (t)) = left ( sqrt1- t^2 ~~~~ arctan fracsqrt1-t^2t ~~~~ t right ) .$$



        $$left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right]_mathbf r (mathbf K(t)) = left[
        beginmatrix
        t & -sqrt1-t^2 & 0 \
        sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right]$$



        The following statement is false.
        $$mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        t & sqrt1-t^2 & 0 \
        -sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right] left[
        beginmatrix
        sqrt1- t^2 \
        arctan fracsqrt1-t^2t \
        t \
        endmatrix right ].$$



        The following statement is true.
        $$mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        t & sqrt1-t^2 & 0 \
        -sqrt1-t^2 & t & 0 \
        0 & 0 & 1 \
        endmatrix
        right] left[ beginmatrix t sqrt 1-t^2 \ 1-t^2 \ t endmatrix right] . $$



        $mathbf K$ expressed in cylindrical coordinates is
        $$ mathbf K (t) = left[
        beginmatrix
        hat mathbf h_rho & hat mathbf h_phi & hat mathbf h_z \
        endmatrix right] left[
        beginmatrix
        sqrt1-t^2 \
        0 \
        t \
        endmatrix
        right] .$$



        QED







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 14 at 12:26









        EricVonB

        1139




        1139






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2879895%2fif-a-curve-is-expressed-in-cylindrical-coords-then-is-the-coefficient-of-the-b%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?