Congruence involving prime numbers

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Given the function $f(x)= x^fracp(p-1)2-1.$ Also let $p$ be an odd prime number. If $epsilon$ is a number $pmodp$ such that
$f(epsilon) equiv 0 pmodp$. Then how do I prove ( prove because Hardy and Wright use it but don't prove it ) that



$$ f(epsilon)equiv 0 pmodp^2$$







share|cite|improve this question
























    up vote
    2
    down vote

    favorite












    Given the function $f(x)= x^fracp(p-1)2-1.$ Also let $p$ be an odd prime number. If $epsilon$ is a number $pmodp$ such that
    $f(epsilon) equiv 0 pmodp$. Then how do I prove ( prove because Hardy and Wright use it but don't prove it ) that



    $$ f(epsilon)equiv 0 pmodp^2$$







    share|cite|improve this question






















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Given the function $f(x)= x^fracp(p-1)2-1.$ Also let $p$ be an odd prime number. If $epsilon$ is a number $pmodp$ such that
      $f(epsilon) equiv 0 pmodp$. Then how do I prove ( prove because Hardy and Wright use it but don't prove it ) that



      $$ f(epsilon)equiv 0 pmodp^2$$







      share|cite|improve this question












      Given the function $f(x)= x^fracp(p-1)2-1.$ Also let $p$ be an odd prime number. If $epsilon$ is a number $pmodp$ such that
      $f(epsilon) equiv 0 pmodp$. Then how do I prove ( prove because Hardy and Wright use it but don't prove it ) that



      $$ f(epsilon)equiv 0 pmodp^2$$









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 3 '16 at 15:18









      sashas

      1,3181021




      1,3181021




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          Let $f(x) = x^p(p-1)/2 - 1$. Suppose we have an integer $a$ such that $f(a) equiv 0 pmodp$.



          First, suppose $p mid a$. Then, $f(a) = a^p(p - 1)/2 - 1 equiv -1 pmodp$, a contradiction.



          Then, suppose $p nmid a$. By Euler's Theorem, $a^phi(p^2) = a^p(p - 1) equiv 1 pmodp^2$. Treating this as a quadratic congruence $(a^p(p-1)/2)^2 equiv 1 pmodp^2$, we see that $a^p(p - 1)/2 equiv pm 1 pmodp^2$.



          If $a^p(p - 1)/2 equiv -1 pmodp^2 $, we imply $a^p(p - 1)/2 equiv -1 pmodp$, so $a^p(p - 1)/2 - 1 = f(a) equiv -2 not equiv 0 pmodp$, a contradiction. Thus, we conclude that $a^p(p - 1)/2 equiv 1 pmodp^2$, or $f(a) equiv 0 pmodp^2$, as desired.






          share|cite|improve this answer






















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1997731%2fcongruence-involving-prime-numbers%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote



            accepted










            Let $f(x) = x^p(p-1)/2 - 1$. Suppose we have an integer $a$ such that $f(a) equiv 0 pmodp$.



            First, suppose $p mid a$. Then, $f(a) = a^p(p - 1)/2 - 1 equiv -1 pmodp$, a contradiction.



            Then, suppose $p nmid a$. By Euler's Theorem, $a^phi(p^2) = a^p(p - 1) equiv 1 pmodp^2$. Treating this as a quadratic congruence $(a^p(p-1)/2)^2 equiv 1 pmodp^2$, we see that $a^p(p - 1)/2 equiv pm 1 pmodp^2$.



            If $a^p(p - 1)/2 equiv -1 pmodp^2 $, we imply $a^p(p - 1)/2 equiv -1 pmodp$, so $a^p(p - 1)/2 - 1 = f(a) equiv -2 not equiv 0 pmodp$, a contradiction. Thus, we conclude that $a^p(p - 1)/2 equiv 1 pmodp^2$, or $f(a) equiv 0 pmodp^2$, as desired.






            share|cite|improve this answer


























              up vote
              3
              down vote



              accepted










              Let $f(x) = x^p(p-1)/2 - 1$. Suppose we have an integer $a$ such that $f(a) equiv 0 pmodp$.



              First, suppose $p mid a$. Then, $f(a) = a^p(p - 1)/2 - 1 equiv -1 pmodp$, a contradiction.



              Then, suppose $p nmid a$. By Euler's Theorem, $a^phi(p^2) = a^p(p - 1) equiv 1 pmodp^2$. Treating this as a quadratic congruence $(a^p(p-1)/2)^2 equiv 1 pmodp^2$, we see that $a^p(p - 1)/2 equiv pm 1 pmodp^2$.



              If $a^p(p - 1)/2 equiv -1 pmodp^2 $, we imply $a^p(p - 1)/2 equiv -1 pmodp$, so $a^p(p - 1)/2 - 1 = f(a) equiv -2 not equiv 0 pmodp$, a contradiction. Thus, we conclude that $a^p(p - 1)/2 equiv 1 pmodp^2$, or $f(a) equiv 0 pmodp^2$, as desired.






              share|cite|improve this answer
























                up vote
                3
                down vote



                accepted







                up vote
                3
                down vote



                accepted






                Let $f(x) = x^p(p-1)/2 - 1$. Suppose we have an integer $a$ such that $f(a) equiv 0 pmodp$.



                First, suppose $p mid a$. Then, $f(a) = a^p(p - 1)/2 - 1 equiv -1 pmodp$, a contradiction.



                Then, suppose $p nmid a$. By Euler's Theorem, $a^phi(p^2) = a^p(p - 1) equiv 1 pmodp^2$. Treating this as a quadratic congruence $(a^p(p-1)/2)^2 equiv 1 pmodp^2$, we see that $a^p(p - 1)/2 equiv pm 1 pmodp^2$.



                If $a^p(p - 1)/2 equiv -1 pmodp^2 $, we imply $a^p(p - 1)/2 equiv -1 pmodp$, so $a^p(p - 1)/2 - 1 = f(a) equiv -2 not equiv 0 pmodp$, a contradiction. Thus, we conclude that $a^p(p - 1)/2 equiv 1 pmodp^2$, or $f(a) equiv 0 pmodp^2$, as desired.






                share|cite|improve this answer














                Let $f(x) = x^p(p-1)/2 - 1$. Suppose we have an integer $a$ such that $f(a) equiv 0 pmodp$.



                First, suppose $p mid a$. Then, $f(a) = a^p(p - 1)/2 - 1 equiv -1 pmodp$, a contradiction.



                Then, suppose $p nmid a$. By Euler's Theorem, $a^phi(p^2) = a^p(p - 1) equiv 1 pmodp^2$. Treating this as a quadratic congruence $(a^p(p-1)/2)^2 equiv 1 pmodp^2$, we see that $a^p(p - 1)/2 equiv pm 1 pmodp^2$.



                If $a^p(p - 1)/2 equiv -1 pmodp^2 $, we imply $a^p(p - 1)/2 equiv -1 pmodp$, so $a^p(p - 1)/2 - 1 = f(a) equiv -2 not equiv 0 pmodp$, a contradiction. Thus, we conclude that $a^p(p - 1)/2 equiv 1 pmodp^2$, or $f(a) equiv 0 pmodp^2$, as desired.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Aug 12 at 4:42

























                answered Nov 5 '16 at 22:20









                theyaoster

                1,210313




                1,210313






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1997731%2fcongruence-involving-prime-numbers%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?