An interesting definite integral $int_0^1(1+x+x^2+x^3+cdotcdotcdot+x^n-1)^2 (1+4x+7x^2+cdotcdotcdot+(3n-2)x^n-1)~dx=n^3$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
12
down vote

favorite
7












How to prove




$~~ forall ninmathbbN^+$,



beginalignI_n=int_0^1(1+x+x^2+x^3+cdotcdotcdot+x^n-1)^2 (1+4x+7x^2+cdotcdotcdot+(3n-2)x^n-1)~dx=n^3.endalign






My Try:

Define $displaystyle S(n)=sum_k=0^n-1x^k=1+x+x^2+x^3+cdotcdotcdot+x^n-1=fracx^n-1x-1$. Then,
beginalignfracddxS(n)=S'(n)=1+2x+3x^2+cdotcdotcdot(n-1)x^n-2=sum_k=0^n-1kx^k-1.endalign



Therefore,
beginalignI_n=int_0^1 S^2(n)left(3S'(n+1)-2S(n)right)~dxendalign
beginalign=3int_0^1 S^2(n)S'(n+1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)(S'(n)+nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)~d(S(n))+3int_0^1 S^2(n)(nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=n^3-1+int_0^1 S^2(n)(3nx^n-1-2S(n))~dxendalign
beginalign=n^3-1+int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dxendalign
So the question becomes:




Prove beginalignI'=int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dx=1.endalign




beginalignI'=int_0^1 frac3nx^n-1(x^n-1)^2(x-1)^2-frac2(x^n-1)^3(x-1)^3~dxendalign
beginalign=int_0^1 frac(x-1)^2left(frac d dx (x^n-1)^3right)-2(x^n-1)^3(x-1)(x-1)^4~dxendalign
beginalign=int_0^1 frac d dx left(frac(x^n-1)^3(x-1)^2right)~dxendalign
beginalign=lim_x to 1 frac(x^n-1)^3(x-1)^2-frac(0^n-1)^3(0-1)^2endalign
beginaligntherefore I'=1.endalign


beginaligntherefore I_n=n^3.endalign




There MUST be other BETTER ways evaluating $I_n$.

Could anyone give me some better solutions? Thanks.







share|cite|improve this question


















  • 6




    Out of curiosity, where did this integral appear?
    – user159517
    Dec 4 '16 at 15:41














up vote
12
down vote

favorite
7












How to prove




$~~ forall ninmathbbN^+$,



beginalignI_n=int_0^1(1+x+x^2+x^3+cdotcdotcdot+x^n-1)^2 (1+4x+7x^2+cdotcdotcdot+(3n-2)x^n-1)~dx=n^3.endalign






My Try:

Define $displaystyle S(n)=sum_k=0^n-1x^k=1+x+x^2+x^3+cdotcdotcdot+x^n-1=fracx^n-1x-1$. Then,
beginalignfracddxS(n)=S'(n)=1+2x+3x^2+cdotcdotcdot(n-1)x^n-2=sum_k=0^n-1kx^k-1.endalign



Therefore,
beginalignI_n=int_0^1 S^2(n)left(3S'(n+1)-2S(n)right)~dxendalign
beginalign=3int_0^1 S^2(n)S'(n+1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)(S'(n)+nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)~d(S(n))+3int_0^1 S^2(n)(nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=n^3-1+int_0^1 S^2(n)(3nx^n-1-2S(n))~dxendalign
beginalign=n^3-1+int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dxendalign
So the question becomes:




Prove beginalignI'=int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dx=1.endalign




beginalignI'=int_0^1 frac3nx^n-1(x^n-1)^2(x-1)^2-frac2(x^n-1)^3(x-1)^3~dxendalign
beginalign=int_0^1 frac(x-1)^2left(frac d dx (x^n-1)^3right)-2(x^n-1)^3(x-1)(x-1)^4~dxendalign
beginalign=int_0^1 frac d dx left(frac(x^n-1)^3(x-1)^2right)~dxendalign
beginalign=lim_x to 1 frac(x^n-1)^3(x-1)^2-frac(0^n-1)^3(0-1)^2endalign
beginaligntherefore I'=1.endalign


beginaligntherefore I_n=n^3.endalign




There MUST be other BETTER ways evaluating $I_n$.

Could anyone give me some better solutions? Thanks.







share|cite|improve this question


















  • 6




    Out of curiosity, where did this integral appear?
    – user159517
    Dec 4 '16 at 15:41












up vote
12
down vote

favorite
7









up vote
12
down vote

favorite
7






7





How to prove




$~~ forall ninmathbbN^+$,



beginalignI_n=int_0^1(1+x+x^2+x^3+cdotcdotcdot+x^n-1)^2 (1+4x+7x^2+cdotcdotcdot+(3n-2)x^n-1)~dx=n^3.endalign






My Try:

Define $displaystyle S(n)=sum_k=0^n-1x^k=1+x+x^2+x^3+cdotcdotcdot+x^n-1=fracx^n-1x-1$. Then,
beginalignfracddxS(n)=S'(n)=1+2x+3x^2+cdotcdotcdot(n-1)x^n-2=sum_k=0^n-1kx^k-1.endalign



Therefore,
beginalignI_n=int_0^1 S^2(n)left(3S'(n+1)-2S(n)right)~dxendalign
beginalign=3int_0^1 S^2(n)S'(n+1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)(S'(n)+nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)~d(S(n))+3int_0^1 S^2(n)(nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=n^3-1+int_0^1 S^2(n)(3nx^n-1-2S(n))~dxendalign
beginalign=n^3-1+int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dxendalign
So the question becomes:




Prove beginalignI'=int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dx=1.endalign




beginalignI'=int_0^1 frac3nx^n-1(x^n-1)^2(x-1)^2-frac2(x^n-1)^3(x-1)^3~dxendalign
beginalign=int_0^1 frac(x-1)^2left(frac d dx (x^n-1)^3right)-2(x^n-1)^3(x-1)(x-1)^4~dxendalign
beginalign=int_0^1 frac d dx left(frac(x^n-1)^3(x-1)^2right)~dxendalign
beginalign=lim_x to 1 frac(x^n-1)^3(x-1)^2-frac(0^n-1)^3(0-1)^2endalign
beginaligntherefore I'=1.endalign


beginaligntherefore I_n=n^3.endalign




There MUST be other BETTER ways evaluating $I_n$.

Could anyone give me some better solutions? Thanks.







share|cite|improve this question














How to prove




$~~ forall ninmathbbN^+$,



beginalignI_n=int_0^1(1+x+x^2+x^3+cdotcdotcdot+x^n-1)^2 (1+4x+7x^2+cdotcdotcdot+(3n-2)x^n-1)~dx=n^3.endalign






My Try:

Define $displaystyle S(n)=sum_k=0^n-1x^k=1+x+x^2+x^3+cdotcdotcdot+x^n-1=fracx^n-1x-1$. Then,
beginalignfracddxS(n)=S'(n)=1+2x+3x^2+cdotcdotcdot(n-1)x^n-2=sum_k=0^n-1kx^k-1.endalign



Therefore,
beginalignI_n=int_0^1 S^2(n)left(3S'(n+1)-2S(n)right)~dxendalign
beginalign=3int_0^1 S^2(n)S'(n+1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)(S'(n)+nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=3int_0^1 S^2(n)~d(S(n))+3int_0^1 S^2(n)(nx^n-1)~dx-2int_0^1 S^3(n)~dxendalign
beginalign=n^3-1+int_0^1 S^2(n)(3nx^n-1-2S(n))~dxendalign
beginalign=n^3-1+int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dxendalign
So the question becomes:




Prove beginalignI'=int_0^1 left(fracx^n-1x-1right)^2left(3nx^n-1-2cdotfracx^n-1x-1right)~dx=1.endalign




beginalignI'=int_0^1 frac3nx^n-1(x^n-1)^2(x-1)^2-frac2(x^n-1)^3(x-1)^3~dxendalign
beginalign=int_0^1 frac(x-1)^2left(frac d dx (x^n-1)^3right)-2(x^n-1)^3(x-1)(x-1)^4~dxendalign
beginalign=int_0^1 frac d dx left(frac(x^n-1)^3(x-1)^2right)~dxendalign
beginalign=lim_x to 1 frac(x^n-1)^3(x-1)^2-frac(0^n-1)^3(0-1)^2endalign
beginaligntherefore I'=1.endalign


beginaligntherefore I_n=n^3.endalign




There MUST be other BETTER ways evaluating $I_n$.

Could anyone give me some better solutions? Thanks.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 12 at 8:10









Martin Sleziak

43.6k6113259




43.6k6113259










asked Dec 4 '16 at 8:08









Wong Austin

1,035316




1,035316







  • 6




    Out of curiosity, where did this integral appear?
    – user159517
    Dec 4 '16 at 15:41












  • 6




    Out of curiosity, where did this integral appear?
    – user159517
    Dec 4 '16 at 15:41







6




6




Out of curiosity, where did this integral appear?
– user159517
Dec 4 '16 at 15:41




Out of curiosity, where did this integral appear?
– user159517
Dec 4 '16 at 15:41










1 Answer
1






active

oldest

votes

















up vote
35
down vote



accepted










First apply the substitution $x = t^3$. Then



beginalign*
I_n
&= int_0^1 (1 + t^3 + cdots + t^3n-3)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) cdot 3t^2 , dt \
&= int_0^1 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) , dt.
endalign*



Now let $u = u(t) = t + t^4 + cdots + t^3n-2$. Then



$$ 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) = 3u^2 fracdudt.$$



Therefore



$$ I_n = left[ u(t)^3 right]_t=0^t=1 = u(1)^3 - u(0)^3 = n^3. $$






share|cite|improve this answer


















  • 3




    In genious! These are still days when some crazy $u$-substitution surprises me.
    – Simply Beautiful Art
    Dec 4 '16 at 13:21










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2042986%2fan-interesting-definite-integral-int-011xx2x3-cdot-cdot-cdotxn-1%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
35
down vote



accepted










First apply the substitution $x = t^3$. Then



beginalign*
I_n
&= int_0^1 (1 + t^3 + cdots + t^3n-3)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) cdot 3t^2 , dt \
&= int_0^1 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) , dt.
endalign*



Now let $u = u(t) = t + t^4 + cdots + t^3n-2$. Then



$$ 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) = 3u^2 fracdudt.$$



Therefore



$$ I_n = left[ u(t)^3 right]_t=0^t=1 = u(1)^3 - u(0)^3 = n^3. $$






share|cite|improve this answer


















  • 3




    In genious! These are still days when some crazy $u$-substitution surprises me.
    – Simply Beautiful Art
    Dec 4 '16 at 13:21














up vote
35
down vote



accepted










First apply the substitution $x = t^3$. Then



beginalign*
I_n
&= int_0^1 (1 + t^3 + cdots + t^3n-3)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) cdot 3t^2 , dt \
&= int_0^1 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) , dt.
endalign*



Now let $u = u(t) = t + t^4 + cdots + t^3n-2$. Then



$$ 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) = 3u^2 fracdudt.$$



Therefore



$$ I_n = left[ u(t)^3 right]_t=0^t=1 = u(1)^3 - u(0)^3 = n^3. $$






share|cite|improve this answer


















  • 3




    In genious! These are still days when some crazy $u$-substitution surprises me.
    – Simply Beautiful Art
    Dec 4 '16 at 13:21












up vote
35
down vote



accepted







up vote
35
down vote



accepted






First apply the substitution $x = t^3$. Then



beginalign*
I_n
&= int_0^1 (1 + t^3 + cdots + t^3n-3)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) cdot 3t^2 , dt \
&= int_0^1 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) , dt.
endalign*



Now let $u = u(t) = t + t^4 + cdots + t^3n-2$. Then



$$ 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) = 3u^2 fracdudt.$$



Therefore



$$ I_n = left[ u(t)^3 right]_t=0^t=1 = u(1)^3 - u(0)^3 = n^3. $$






share|cite|improve this answer














First apply the substitution $x = t^3$. Then



beginalign*
I_n
&= int_0^1 (1 + t^3 + cdots + t^3n-3)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) cdot 3t^2 , dt \
&= int_0^1 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) , dt.
endalign*



Now let $u = u(t) = t + t^4 + cdots + t^3n-2$. Then



$$ 3 (t + t^4 + cdots + t^3n-2)^2 (1 + 4t^3 + cdots + (3n-2)t^3n-3) = 3u^2 fracdudt.$$



Therefore



$$ I_n = left[ u(t)^3 right]_t=0^t=1 = u(1)^3 - u(0)^3 = n^3. $$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 4 '16 at 8:19

























answered Dec 4 '16 at 8:14









Sangchul Lee

85.6k12155253




85.6k12155253







  • 3




    In genious! These are still days when some crazy $u$-substitution surprises me.
    – Simply Beautiful Art
    Dec 4 '16 at 13:21












  • 3




    In genious! These are still days when some crazy $u$-substitution surprises me.
    – Simply Beautiful Art
    Dec 4 '16 at 13:21







3




3




In genious! These are still days when some crazy $u$-substitution surprises me.
– Simply Beautiful Art
Dec 4 '16 at 13:21




In genious! These are still days when some crazy $u$-substitution surprises me.
– Simply Beautiful Art
Dec 4 '16 at 13:21












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2042986%2fan-interesting-definite-integral-int-011xx2x3-cdot-cdot-cdotxn-1%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?