$YsimoperatornamePoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $operatornameCorr(X, Z)$. [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
This question already has an answer here:
$XsimmathrmPoisson(lambda_1 = 5)$ and $YsimmathrmPoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $mathrmCorr(X, Z)$.
2 answers
Let $X$ and $Y$ be independent random variables such that $Xsim operatornamePoisson(lambda_1 = 5)$ and
$Ysim operatornamePoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $operatornameCorr(X, Z)$.
Answer:
$operatornameVar(X) = 5$
$operatornameVar(Y) = 15$
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
$operatornameVar(Z) = operatornameVar(X + Y) = V(X) + V(Y) = 5 + 15 = 20$
$$operatornameCorr(X, Z) = fracoperatornameCov(X, Z)sqrtoperatornameVar(X) sqrtoperatornameVar(Z) = frac5sqrt5 cdot 20 = 0.5$$
I'm just wondering if this statement is true for all covariance values or just if independent.
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
Couldn't find it on wiki
probability covariance
marked as duplicate by heropup
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 10 at 21:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
1
down vote
favorite
This question already has an answer here:
$XsimmathrmPoisson(lambda_1 = 5)$ and $YsimmathrmPoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $mathrmCorr(X, Z)$.
2 answers
Let $X$ and $Y$ be independent random variables such that $Xsim operatornamePoisson(lambda_1 = 5)$ and
$Ysim operatornamePoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $operatornameCorr(X, Z)$.
Answer:
$operatornameVar(X) = 5$
$operatornameVar(Y) = 15$
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
$operatornameVar(Z) = operatornameVar(X + Y) = V(X) + V(Y) = 5 + 15 = 20$
$$operatornameCorr(X, Z) = fracoperatornameCov(X, Z)sqrtoperatornameVar(X) sqrtoperatornameVar(Z) = frac5sqrt5 cdot 20 = 0.5$$
I'm just wondering if this statement is true for all covariance values or just if independent.
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
Couldn't find it on wiki
probability covariance
marked as duplicate by heropup
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 10 at 21:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
This question already has an answer here:
$XsimmathrmPoisson(lambda_1 = 5)$ and $YsimmathrmPoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $mathrmCorr(X, Z)$.
2 answers
Let $X$ and $Y$ be independent random variables such that $Xsim operatornamePoisson(lambda_1 = 5)$ and
$Ysim operatornamePoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $operatornameCorr(X, Z)$.
Answer:
$operatornameVar(X) = 5$
$operatornameVar(Y) = 15$
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
$operatornameVar(Z) = operatornameVar(X + Y) = V(X) + V(Y) = 5 + 15 = 20$
$$operatornameCorr(X, Z) = fracoperatornameCov(X, Z)sqrtoperatornameVar(X) sqrtoperatornameVar(Z) = frac5sqrt5 cdot 20 = 0.5$$
I'm just wondering if this statement is true for all covariance values or just if independent.
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
Couldn't find it on wiki
probability covariance
This question already has an answer here:
$XsimmathrmPoisson(lambda_1 = 5)$ and $YsimmathrmPoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $mathrmCorr(X, Z)$.
2 answers
Let $X$ and $Y$ be independent random variables such that $Xsim operatornamePoisson(lambda_1 = 5)$ and
$Ysim operatornamePoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $operatornameCorr(X, Z)$.
Answer:
$operatornameVar(X) = 5$
$operatornameVar(Y) = 15$
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
$operatornameVar(Z) = operatornameVar(X + Y) = V(X) + V(Y) = 5 + 15 = 20$
$$operatornameCorr(X, Z) = fracoperatornameCov(X, Z)sqrtoperatornameVar(X) sqrtoperatornameVar(Z) = frac5sqrt5 cdot 20 = 0.5$$
I'm just wondering if this statement is true for all covariance values or just if independent.
$operatornameCov(Z) = operatornameCov(X, X+Y) = operatornameCov(X, X) = operatornameVar(X) = 5$
Couldn't find it on wiki
This question already has an answer here:
$XsimmathrmPoisson(lambda_1 = 5)$ and $YsimmathrmPoisson(lambda_2 = 15)$. Let $Z = X + Y$ . Compute $mathrmCorr(X, Z)$.
2 answers
probability covariance
edited Aug 10 at 21:41
Bernard
111k635103
111k635103
asked Aug 10 at 21:28
Tinler
404311
404311
marked as duplicate by heropup
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 10 at 21:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by heropup
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Aug 10 at 21:56
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
$$Cov(X,Z) = Cov(X,X+Y)$$
Let $E(X) = mu_X$ and $E(Y) = mu_Y$ then
$$Cov(X,X+Y) = E(X-mu_X)(X-mu_X + Y - mu_Y) $$
which is
$$Cov(X,X+Y) = E((X-mu_X)^2) + E(X-mu_X)(Y-mu_Y) $$
hence
$$Cov(X,X+Y)= Var X + E(XY) - mu_XEY -mu_YEX +mu_Xmu_Y $$
Due to independence of $X$ and $Y$, we have
$$Cov(X,X+Y) = Var X + E(X)E(Y) - mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y$$
i.e.
$$Cov(X,X+Y) = Var X + mu_Xmu_Y- mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y = Var X$$
add a comment |Â
up vote
0
down vote
Lemma. $$textcov(X, Y) = 0$$ if $X$ and $Y$ are independent.
Proof. $$textcov(X, Y) = mathopmathbbE[XY] - mathopmathbbE[X]mathopmathbbE[Y] $$
which is 0 as the expected value of a product of random variables is the product of the expected values of those variables.
Original question
Now back to the original question:
$$beginalign
textcov(X, Z) &= textcov(X,X-Y)\
&= textcov(X,X)-textcov(X,Y)\
&= textvar(X,X) - 0\
&= 5
endalign$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$$Cov(X,Z) = Cov(X,X+Y)$$
Let $E(X) = mu_X$ and $E(Y) = mu_Y$ then
$$Cov(X,X+Y) = E(X-mu_X)(X-mu_X + Y - mu_Y) $$
which is
$$Cov(X,X+Y) = E((X-mu_X)^2) + E(X-mu_X)(Y-mu_Y) $$
hence
$$Cov(X,X+Y)= Var X + E(XY) - mu_XEY -mu_YEX +mu_Xmu_Y $$
Due to independence of $X$ and $Y$, we have
$$Cov(X,X+Y) = Var X + E(X)E(Y) - mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y$$
i.e.
$$Cov(X,X+Y) = Var X + mu_Xmu_Y- mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y = Var X$$
add a comment |Â
up vote
0
down vote
$$Cov(X,Z) = Cov(X,X+Y)$$
Let $E(X) = mu_X$ and $E(Y) = mu_Y$ then
$$Cov(X,X+Y) = E(X-mu_X)(X-mu_X + Y - mu_Y) $$
which is
$$Cov(X,X+Y) = E((X-mu_X)^2) + E(X-mu_X)(Y-mu_Y) $$
hence
$$Cov(X,X+Y)= Var X + E(XY) - mu_XEY -mu_YEX +mu_Xmu_Y $$
Due to independence of $X$ and $Y$, we have
$$Cov(X,X+Y) = Var X + E(X)E(Y) - mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y$$
i.e.
$$Cov(X,X+Y) = Var X + mu_Xmu_Y- mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y = Var X$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$Cov(X,Z) = Cov(X,X+Y)$$
Let $E(X) = mu_X$ and $E(Y) = mu_Y$ then
$$Cov(X,X+Y) = E(X-mu_X)(X-mu_X + Y - mu_Y) $$
which is
$$Cov(X,X+Y) = E((X-mu_X)^2) + E(X-mu_X)(Y-mu_Y) $$
hence
$$Cov(X,X+Y)= Var X + E(XY) - mu_XEY -mu_YEX +mu_Xmu_Y $$
Due to independence of $X$ and $Y$, we have
$$Cov(X,X+Y) = Var X + E(X)E(Y) - mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y$$
i.e.
$$Cov(X,X+Y) = Var X + mu_Xmu_Y- mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y = Var X$$
$$Cov(X,Z) = Cov(X,X+Y)$$
Let $E(X) = mu_X$ and $E(Y) = mu_Y$ then
$$Cov(X,X+Y) = E(X-mu_X)(X-mu_X + Y - mu_Y) $$
which is
$$Cov(X,X+Y) = E((X-mu_X)^2) + E(X-mu_X)(Y-mu_Y) $$
hence
$$Cov(X,X+Y)= Var X + E(XY) - mu_XEY -mu_YEX +mu_Xmu_Y $$
Due to independence of $X$ and $Y$, we have
$$Cov(X,X+Y) = Var X + E(X)E(Y) - mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y$$
i.e.
$$Cov(X,X+Y) = Var X + mu_Xmu_Y- mu_Xmu_Y -mu_Ymu_X +mu_Xmu_Y = Var X$$
answered Aug 10 at 21:36
Ahmad Bazzi
3,0601419
3,0601419
add a comment |Â
add a comment |Â
up vote
0
down vote
Lemma. $$textcov(X, Y) = 0$$ if $X$ and $Y$ are independent.
Proof. $$textcov(X, Y) = mathopmathbbE[XY] - mathopmathbbE[X]mathopmathbbE[Y] $$
which is 0 as the expected value of a product of random variables is the product of the expected values of those variables.
Original question
Now back to the original question:
$$beginalign
textcov(X, Z) &= textcov(X,X-Y)\
&= textcov(X,X)-textcov(X,Y)\
&= textvar(X,X) - 0\
&= 5
endalign$$
add a comment |Â
up vote
0
down vote
Lemma. $$textcov(X, Y) = 0$$ if $X$ and $Y$ are independent.
Proof. $$textcov(X, Y) = mathopmathbbE[XY] - mathopmathbbE[X]mathopmathbbE[Y] $$
which is 0 as the expected value of a product of random variables is the product of the expected values of those variables.
Original question
Now back to the original question:
$$beginalign
textcov(X, Z) &= textcov(X,X-Y)\
&= textcov(X,X)-textcov(X,Y)\
&= textvar(X,X) - 0\
&= 5
endalign$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Lemma. $$textcov(X, Y) = 0$$ if $X$ and $Y$ are independent.
Proof. $$textcov(X, Y) = mathopmathbbE[XY] - mathopmathbbE[X]mathopmathbbE[Y] $$
which is 0 as the expected value of a product of random variables is the product of the expected values of those variables.
Original question
Now back to the original question:
$$beginalign
textcov(X, Z) &= textcov(X,X-Y)\
&= textcov(X,X)-textcov(X,Y)\
&= textvar(X,X) - 0\
&= 5
endalign$$
Lemma. $$textcov(X, Y) = 0$$ if $X$ and $Y$ are independent.
Proof. $$textcov(X, Y) = mathopmathbbE[XY] - mathopmathbbE[X]mathopmathbbE[Y] $$
which is 0 as the expected value of a product of random variables is the product of the expected values of those variables.
Original question
Now back to the original question:
$$beginalign
textcov(X, Z) &= textcov(X,X-Y)\
&= textcov(X,X)-textcov(X,Y)\
&= textvar(X,X) - 0\
&= 5
endalign$$
answered Aug 10 at 21:51
Peteris
48429
48429
add a comment |Â
add a comment |Â