Evaluate $int _0^1fracdx(e^x-1)^1/3$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
3












Study the convergence of the following integral for $alphainmathbbR$ and evaluate it for $alpha = frac13$ if it converges for that value.



$$Largeint _0^1fracdx(e^x-1)^alpha x$$



The integral converges for $alpha lt 1$, if I am not wrong, so I can evaluate:
$$Largeint _0^1fracdx(e^x-1)^frac13$$



whose primitive, using some razionalizations and change of variables, is: $frac12log|4(e^x-1)^frac23-4(e^x-1)^frac13+4|+sqrt3arctanleft(frac1sqrt3left(2(e^x-1)^frac13-1right)right)-log|(e^x-1)^frac13+1|+C$



Anyone knows if there is a less intricate way in order of obtain it than almost 3 sheet full of calculations? Thank you







share|cite|improve this question


















  • 1




    There seems to be an excess $x$ in the first displayed equation?
    – joriki
    Aug 10 at 19:20






  • 1




    How could you prove that it converges for $alpha <1 $?
    – The_lost
    Aug 10 at 19:40







  • 1




    Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
    – MathNovice
    Aug 10 at 19:47










  • Using Large is rarely, and certainly not here, a good idea.
    – Did
    Aug 10 at 20:29











  • @Did I have used left( , right)
    – F.inc
    Aug 10 at 20:33














up vote
3
down vote

favorite
3












Study the convergence of the following integral for $alphainmathbbR$ and evaluate it for $alpha = frac13$ if it converges for that value.



$$Largeint _0^1fracdx(e^x-1)^alpha x$$



The integral converges for $alpha lt 1$, if I am not wrong, so I can evaluate:
$$Largeint _0^1fracdx(e^x-1)^frac13$$



whose primitive, using some razionalizations and change of variables, is: $frac12log|4(e^x-1)^frac23-4(e^x-1)^frac13+4|+sqrt3arctanleft(frac1sqrt3left(2(e^x-1)^frac13-1right)right)-log|(e^x-1)^frac13+1|+C$



Anyone knows if there is a less intricate way in order of obtain it than almost 3 sheet full of calculations? Thank you







share|cite|improve this question


















  • 1




    There seems to be an excess $x$ in the first displayed equation?
    – joriki
    Aug 10 at 19:20






  • 1




    How could you prove that it converges for $alpha <1 $?
    – The_lost
    Aug 10 at 19:40







  • 1




    Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
    – MathNovice
    Aug 10 at 19:47










  • Using Large is rarely, and certainly not here, a good idea.
    – Did
    Aug 10 at 20:29











  • @Did I have used left( , right)
    – F.inc
    Aug 10 at 20:33












up vote
3
down vote

favorite
3









up vote
3
down vote

favorite
3






3





Study the convergence of the following integral for $alphainmathbbR$ and evaluate it for $alpha = frac13$ if it converges for that value.



$$Largeint _0^1fracdx(e^x-1)^alpha x$$



The integral converges for $alpha lt 1$, if I am not wrong, so I can evaluate:
$$Largeint _0^1fracdx(e^x-1)^frac13$$



whose primitive, using some razionalizations and change of variables, is: $frac12log|4(e^x-1)^frac23-4(e^x-1)^frac13+4|+sqrt3arctanleft(frac1sqrt3left(2(e^x-1)^frac13-1right)right)-log|(e^x-1)^frac13+1|+C$



Anyone knows if there is a less intricate way in order of obtain it than almost 3 sheet full of calculations? Thank you







share|cite|improve this question














Study the convergence of the following integral for $alphainmathbbR$ and evaluate it for $alpha = frac13$ if it converges for that value.



$$Largeint _0^1fracdx(e^x-1)^alpha x$$



The integral converges for $alpha lt 1$, if I am not wrong, so I can evaluate:
$$Largeint _0^1fracdx(e^x-1)^frac13$$



whose primitive, using some razionalizations and change of variables, is: $frac12log|4(e^x-1)^frac23-4(e^x-1)^frac13+4|+sqrt3arctanleft(frac1sqrt3left(2(e^x-1)^frac13-1right)right)-log|(e^x-1)^frac13+1|+C$



Anyone knows if there is a less intricate way in order of obtain it than almost 3 sheet full of calculations? Thank you









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 10 at 20:28









Did

242k23208443




242k23208443










asked Aug 10 at 19:11









F.inc

3158




3158







  • 1




    There seems to be an excess $x$ in the first displayed equation?
    – joriki
    Aug 10 at 19:20






  • 1




    How could you prove that it converges for $alpha <1 $?
    – The_lost
    Aug 10 at 19:40







  • 1




    Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
    – MathNovice
    Aug 10 at 19:47










  • Using Large is rarely, and certainly not here, a good idea.
    – Did
    Aug 10 at 20:29











  • @Did I have used left( , right)
    – F.inc
    Aug 10 at 20:33












  • 1




    There seems to be an excess $x$ in the first displayed equation?
    – joriki
    Aug 10 at 19:20






  • 1




    How could you prove that it converges for $alpha <1 $?
    – The_lost
    Aug 10 at 19:40







  • 1




    Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
    – MathNovice
    Aug 10 at 19:47










  • Using Large is rarely, and certainly not here, a good idea.
    – Did
    Aug 10 at 20:29











  • @Did I have used left( , right)
    – F.inc
    Aug 10 at 20:33







1




1




There seems to be an excess $x$ in the first displayed equation?
– joriki
Aug 10 at 19:20




There seems to be an excess $x$ in the first displayed equation?
– joriki
Aug 10 at 19:20




1




1




How could you prove that it converges for $alpha <1 $?
– The_lost
Aug 10 at 19:40





How could you prove that it converges for $alpha <1 $?
– The_lost
Aug 10 at 19:40





1




1




Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
– MathNovice
Aug 10 at 19:47




Will the substitution $(e^x -1)^1/3 = u$ make it any simpler?
– MathNovice
Aug 10 at 19:47












Using Large is rarely, and certainly not here, a good idea.
– Did
Aug 10 at 20:29





Using Large is rarely, and certainly not here, a good idea.
– Did
Aug 10 at 20:29













@Did I have used left( , right)
– F.inc
Aug 10 at 20:33




@Did I have used left( , right)
– F.inc
Aug 10 at 20:33










3 Answers
3






active

oldest

votes

















up vote
10
down vote



accepted










$$int_0^1fracdxsqrt[3]e^x-1stackrelxmapsto log t=int_1^efracdttsqrt[3]t-1stackreltmapsto s+1=int_0^e-1fracds(s-1)sqrt[3]sstackrelsmapsto u^3=int_0^sqrt[3]e-1frac3uu^3-1,du$$
where
$$ frac3uu^3-1 stackreltextResidues= frac1u-1+frac1-uu^2+u+1 $$
and
$$ frac1-uu^2+u+1 = frac4(2u+1)^2+3-frac4u(2u+1)^2+3 $$
lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $frac1(u+alpha)^n$ and $frac1(u^2+alpha^2)^n$ always have simple primitives, that's the core of symbolic integration algorithms.






share|cite|improve this answer



























    up vote
    4
    down vote













    using $u=left( e^x-1 right)^1/3$ leads to $intfrac3uu^3+1du$
    $$
    beginalign
    & =int-frac1u+1+fracu+1u^2-u+1du \
    & =int-frac1u+1du+frac12intfrac2u-1u^2-u+1du+frac32intfrac1u^2-u+1du \
    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+frac32intfrac1u^2-u+1du \
    endalign
    $$
    For the last integral use $v=2u-1$ and notice that $4left( u^2-u+1 right)=v^2+3$
    $$
    beginalign
    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3intfrac1v^2+3dv \
    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3frac1sqrt3tan^-1left( frac2u-1sqrt3 right) \
    endalign
    $$






    share|cite|improve this answer



























      up vote
      3
      down vote













      Take
      $$t = (e^x - 1)^1/3$$
      or
      $$x = ln( t^3 + 1 )$$
      Then
      $$dt = frac13e^x(e^x-1)^-2/3 dx$$
      Hence
      $$Largeint _0^1fracdx(e^x-1)^frac13
      =
      3Largeint _0^(e-1)^1/3frac1 t e^x(e^x-1)^-2/3 dt
      =
      3Largeint _0^(e-1)^1/3fract(t^3 + 1) dt
      $$
      The last integral could be written as
      $$
      displaystyleint _0^(e-1)^1/3dfractleft(t+1right)left(t^2-t+1right),mathrmdt$$
      Perform Partial Fraction Decomposition
      $$displaystyleint _0^(e-1)^1/3left(dfract+13left(t^2-t+1right)-dfrac13left(t+1right)right)mathrmdt$$
      Take the first integral above, i.e. $displaystyleintdfract+1t^2-t+1,mathrmdt$ could be written as
      $$classsteps-nodecssIdsteps-node-7dfrac12displaystyleintdfrac2t-1t^2-t+1,mathrmdt+classsteps-nodecssIdsteps-node-8dfrac32displaystyleintdfrac1t^2-t+1,mathrmdt$$
      which is equal to (with some straight forward math)
      $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$$
      Now, we need $dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$
      which is easily shown to be
      $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)==lnleft(t+1right)$$
      Finalizing we get
      $$3left(-dfracright)3+dfraclnleft(t^2-t+1right)6+dfracarctanleft(frac2t-1sqrt3right)sqrt3right)Bigvert_0^(e-1)^1/3$$
      which is
      $$3left(dfraclnleft(left(mathrme-1right)^frac23-sqrt[3]mathrme-1+1right)6+dfracarctanleft(frac2cdotsqrt3sqrt[3]mathrme-1-sqrt33right)sqrt3-dfraclnleft(sqrt[3]mathrme-1+1right)3+dfracpi2cdot3^frac32right)$$






      share|cite|improve this answer




















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2878721%2fevaluate-int-01-fracdxex-11-3%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        10
        down vote



        accepted










        $$int_0^1fracdxsqrt[3]e^x-1stackrelxmapsto log t=int_1^efracdttsqrt[3]t-1stackreltmapsto s+1=int_0^e-1fracds(s-1)sqrt[3]sstackrelsmapsto u^3=int_0^sqrt[3]e-1frac3uu^3-1,du$$
        where
        $$ frac3uu^3-1 stackreltextResidues= frac1u-1+frac1-uu^2+u+1 $$
        and
        $$ frac1-uu^2+u+1 = frac4(2u+1)^2+3-frac4u(2u+1)^2+3 $$
        lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $frac1(u+alpha)^n$ and $frac1(u^2+alpha^2)^n$ always have simple primitives, that's the core of symbolic integration algorithms.






        share|cite|improve this answer
























          up vote
          10
          down vote



          accepted










          $$int_0^1fracdxsqrt[3]e^x-1stackrelxmapsto log t=int_1^efracdttsqrt[3]t-1stackreltmapsto s+1=int_0^e-1fracds(s-1)sqrt[3]sstackrelsmapsto u^3=int_0^sqrt[3]e-1frac3uu^3-1,du$$
          where
          $$ frac3uu^3-1 stackreltextResidues= frac1u-1+frac1-uu^2+u+1 $$
          and
          $$ frac1-uu^2+u+1 = frac4(2u+1)^2+3-frac4u(2u+1)^2+3 $$
          lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $frac1(u+alpha)^n$ and $frac1(u^2+alpha^2)^n$ always have simple primitives, that's the core of symbolic integration algorithms.






          share|cite|improve this answer






















            up vote
            10
            down vote



            accepted







            up vote
            10
            down vote



            accepted






            $$int_0^1fracdxsqrt[3]e^x-1stackrelxmapsto log t=int_1^efracdttsqrt[3]t-1stackreltmapsto s+1=int_0^e-1fracds(s-1)sqrt[3]sstackrelsmapsto u^3=int_0^sqrt[3]e-1frac3uu^3-1,du$$
            where
            $$ frac3uu^3-1 stackreltextResidues= frac1u-1+frac1-uu^2+u+1 $$
            and
            $$ frac1-uu^2+u+1 = frac4(2u+1)^2+3-frac4u(2u+1)^2+3 $$
            lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $frac1(u+alpha)^n$ and $frac1(u^2+alpha^2)^n$ always have simple primitives, that's the core of symbolic integration algorithms.






            share|cite|improve this answer












            $$int_0^1fracdxsqrt[3]e^x-1stackrelxmapsto log t=int_1^efracdttsqrt[3]t-1stackreltmapsto s+1=int_0^e-1fracds(s-1)sqrt[3]sstackrelsmapsto u^3=int_0^sqrt[3]e-1frac3uu^3-1,du$$
            where
            $$ frac3uu^3-1 stackreltextResidues= frac1u-1+frac1-uu^2+u+1 $$
            and
            $$ frac1-uu^2+u+1 = frac4(2u+1)^2+3-frac4u(2u+1)^2+3 $$
            lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $frac1(u+alpha)^n$ and $frac1(u^2+alpha^2)^n$ always have simple primitives, that's the core of symbolic integration algorithms.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Aug 10 at 19:40









            Jack D'Aurizio♦

            271k31266631




            271k31266631




















                up vote
                4
                down vote













                using $u=left( e^x-1 right)^1/3$ leads to $intfrac3uu^3+1du$
                $$
                beginalign
                & =int-frac1u+1+fracu+1u^2-u+1du \
                & =int-frac1u+1du+frac12intfrac2u-1u^2-u+1du+frac32intfrac1u^2-u+1du \
                & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+frac32intfrac1u^2-u+1du \
                endalign
                $$
                For the last integral use $v=2u-1$ and notice that $4left( u^2-u+1 right)=v^2+3$
                $$
                beginalign
                & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3intfrac1v^2+3dv \
                & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3frac1sqrt3tan^-1left( frac2u-1sqrt3 right) \
                endalign
                $$






                share|cite|improve this answer
























                  up vote
                  4
                  down vote













                  using $u=left( e^x-1 right)^1/3$ leads to $intfrac3uu^3+1du$
                  $$
                  beginalign
                  & =int-frac1u+1+fracu+1u^2-u+1du \
                  & =int-frac1u+1du+frac12intfrac2u-1u^2-u+1du+frac32intfrac1u^2-u+1du \
                  & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+frac32intfrac1u^2-u+1du \
                  endalign
                  $$
                  For the last integral use $v=2u-1$ and notice that $4left( u^2-u+1 right)=v^2+3$
                  $$
                  beginalign
                  & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3intfrac1v^2+3dv \
                  & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3frac1sqrt3tan^-1left( frac2u-1sqrt3 right) \
                  endalign
                  $$






                  share|cite|improve this answer






















                    up vote
                    4
                    down vote










                    up vote
                    4
                    down vote









                    using $u=left( e^x-1 right)^1/3$ leads to $intfrac3uu^3+1du$
                    $$
                    beginalign
                    & =int-frac1u+1+fracu+1u^2-u+1du \
                    & =int-frac1u+1du+frac12intfrac2u-1u^2-u+1du+frac32intfrac1u^2-u+1du \
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+frac32intfrac1u^2-u+1du \
                    endalign
                    $$
                    For the last integral use $v=2u-1$ and notice that $4left( u^2-u+1 right)=v^2+3$
                    $$
                    beginalign
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3intfrac1v^2+3dv \
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3frac1sqrt3tan^-1left( frac2u-1sqrt3 right) \
                    endalign
                    $$






                    share|cite|improve this answer












                    using $u=left( e^x-1 right)^1/3$ leads to $intfrac3uu^3+1du$
                    $$
                    beginalign
                    & =int-frac1u+1+fracu+1u^2-u+1du \
                    & =int-frac1u+1du+frac12intfrac2u-1u^2-u+1du+frac32intfrac1u^2-u+1du \
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+frac32intfrac1u^2-u+1du \
                    endalign
                    $$
                    For the last integral use $v=2u-1$ and notice that $4left( u^2-u+1 right)=v^2+3$
                    $$
                    beginalign
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3intfrac1v^2+3dv \
                    & =ln left( u+1 right)+frac12ln left( u^2-u+1 right)+3frac1sqrt3tan^-1left( frac2u-1sqrt3 right) \
                    endalign
                    $$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Aug 10 at 20:11









                    Vincent Law

                    1




                    1




















                        up vote
                        3
                        down vote













                        Take
                        $$t = (e^x - 1)^1/3$$
                        or
                        $$x = ln( t^3 + 1 )$$
                        Then
                        $$dt = frac13e^x(e^x-1)^-2/3 dx$$
                        Hence
                        $$Largeint _0^1fracdx(e^x-1)^frac13
                        =
                        3Largeint _0^(e-1)^1/3frac1 t e^x(e^x-1)^-2/3 dt
                        =
                        3Largeint _0^(e-1)^1/3fract(t^3 + 1) dt
                        $$
                        The last integral could be written as
                        $$
                        displaystyleint _0^(e-1)^1/3dfractleft(t+1right)left(t^2-t+1right),mathrmdt$$
                        Perform Partial Fraction Decomposition
                        $$displaystyleint _0^(e-1)^1/3left(dfract+13left(t^2-t+1right)-dfrac13left(t+1right)right)mathrmdt$$
                        Take the first integral above, i.e. $displaystyleintdfract+1t^2-t+1,mathrmdt$ could be written as
                        $$classsteps-nodecssIdsteps-node-7dfrac12displaystyleintdfrac2t-1t^2-t+1,mathrmdt+classsteps-nodecssIdsteps-node-8dfrac32displaystyleintdfrac1t^2-t+1,mathrmdt$$
                        which is equal to (with some straight forward math)
                        $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$$
                        Now, we need $dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$
                        which is easily shown to be
                        $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)==lnleft(t+1right)$$
                        Finalizing we get
                        $$3left(-dfracright)3+dfraclnleft(t^2-t+1right)6+dfracarctanleft(frac2t-1sqrt3right)sqrt3right)Bigvert_0^(e-1)^1/3$$
                        which is
                        $$3left(dfraclnleft(left(mathrme-1right)^frac23-sqrt[3]mathrme-1+1right)6+dfracarctanleft(frac2cdotsqrt3sqrt[3]mathrme-1-sqrt33right)sqrt3-dfraclnleft(sqrt[3]mathrme-1+1right)3+dfracpi2cdot3^frac32right)$$






                        share|cite|improve this answer
























                          up vote
                          3
                          down vote













                          Take
                          $$t = (e^x - 1)^1/3$$
                          or
                          $$x = ln( t^3 + 1 )$$
                          Then
                          $$dt = frac13e^x(e^x-1)^-2/3 dx$$
                          Hence
                          $$Largeint _0^1fracdx(e^x-1)^frac13
                          =
                          3Largeint _0^(e-1)^1/3frac1 t e^x(e^x-1)^-2/3 dt
                          =
                          3Largeint _0^(e-1)^1/3fract(t^3 + 1) dt
                          $$
                          The last integral could be written as
                          $$
                          displaystyleint _0^(e-1)^1/3dfractleft(t+1right)left(t^2-t+1right),mathrmdt$$
                          Perform Partial Fraction Decomposition
                          $$displaystyleint _0^(e-1)^1/3left(dfract+13left(t^2-t+1right)-dfrac13left(t+1right)right)mathrmdt$$
                          Take the first integral above, i.e. $displaystyleintdfract+1t^2-t+1,mathrmdt$ could be written as
                          $$classsteps-nodecssIdsteps-node-7dfrac12displaystyleintdfrac2t-1t^2-t+1,mathrmdt+classsteps-nodecssIdsteps-node-8dfrac32displaystyleintdfrac1t^2-t+1,mathrmdt$$
                          which is equal to (with some straight forward math)
                          $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$$
                          Now, we need $dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$
                          which is easily shown to be
                          $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)==lnleft(t+1right)$$
                          Finalizing we get
                          $$3left(-dfracright)3+dfraclnleft(t^2-t+1right)6+dfracarctanleft(frac2t-1sqrt3right)sqrt3right)Bigvert_0^(e-1)^1/3$$
                          which is
                          $$3left(dfraclnleft(left(mathrme-1right)^frac23-sqrt[3]mathrme-1+1right)6+dfracarctanleft(frac2cdotsqrt3sqrt[3]mathrme-1-sqrt33right)sqrt3-dfraclnleft(sqrt[3]mathrme-1+1right)3+dfracpi2cdot3^frac32right)$$






                          share|cite|improve this answer






















                            up vote
                            3
                            down vote










                            up vote
                            3
                            down vote









                            Take
                            $$t = (e^x - 1)^1/3$$
                            or
                            $$x = ln( t^3 + 1 )$$
                            Then
                            $$dt = frac13e^x(e^x-1)^-2/3 dx$$
                            Hence
                            $$Largeint _0^1fracdx(e^x-1)^frac13
                            =
                            3Largeint _0^(e-1)^1/3frac1 t e^x(e^x-1)^-2/3 dt
                            =
                            3Largeint _0^(e-1)^1/3fract(t^3 + 1) dt
                            $$
                            The last integral could be written as
                            $$
                            displaystyleint _0^(e-1)^1/3dfractleft(t+1right)left(t^2-t+1right),mathrmdt$$
                            Perform Partial Fraction Decomposition
                            $$displaystyleint _0^(e-1)^1/3left(dfract+13left(t^2-t+1right)-dfrac13left(t+1right)right)mathrmdt$$
                            Take the first integral above, i.e. $displaystyleintdfract+1t^2-t+1,mathrmdt$ could be written as
                            $$classsteps-nodecssIdsteps-node-7dfrac12displaystyleintdfrac2t-1t^2-t+1,mathrmdt+classsteps-nodecssIdsteps-node-8dfrac32displaystyleintdfrac1t^2-t+1,mathrmdt$$
                            which is equal to (with some straight forward math)
                            $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$$
                            Now, we need $dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$
                            which is easily shown to be
                            $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)==lnleft(t+1right)$$
                            Finalizing we get
                            $$3left(-dfracright)3+dfraclnleft(t^2-t+1right)6+dfracarctanleft(frac2t-1sqrt3right)sqrt3right)Bigvert_0^(e-1)^1/3$$
                            which is
                            $$3left(dfraclnleft(left(mathrme-1right)^frac23-sqrt[3]mathrme-1+1right)6+dfracarctanleft(frac2cdotsqrt3sqrt[3]mathrme-1-sqrt33right)sqrt3-dfraclnleft(sqrt[3]mathrme-1+1right)3+dfracpi2cdot3^frac32right)$$






                            share|cite|improve this answer












                            Take
                            $$t = (e^x - 1)^1/3$$
                            or
                            $$x = ln( t^3 + 1 )$$
                            Then
                            $$dt = frac13e^x(e^x-1)^-2/3 dx$$
                            Hence
                            $$Largeint _0^1fracdx(e^x-1)^frac13
                            =
                            3Largeint _0^(e-1)^1/3frac1 t e^x(e^x-1)^-2/3 dt
                            =
                            3Largeint _0^(e-1)^1/3fract(t^3 + 1) dt
                            $$
                            The last integral could be written as
                            $$
                            displaystyleint _0^(e-1)^1/3dfractleft(t+1right)left(t^2-t+1right),mathrmdt$$
                            Perform Partial Fraction Decomposition
                            $$displaystyleint _0^(e-1)^1/3left(dfract+13left(t^2-t+1right)-dfrac13left(t+1right)right)mathrmdt$$
                            Take the first integral above, i.e. $displaystyleintdfract+1t^2-t+1,mathrmdt$ could be written as
                            $$classsteps-nodecssIdsteps-node-7dfrac12displaystyleintdfrac2t-1t^2-t+1,mathrmdt+classsteps-nodecssIdsteps-node-8dfrac32displaystyleintdfrac1t^2-t+1,mathrmdt$$
                            which is equal to (with some straight forward math)
                            $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$$
                            Now, we need $dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)$
                            which is easily shown to be
                            $$dfraclnleft(t^2-t+1right)2+sqrt3arctanleft(dfrac2t-1sqrt3right)==lnleft(t+1right)$$
                            Finalizing we get
                            $$3left(-dfracright)3+dfraclnleft(t^2-t+1right)6+dfracarctanleft(frac2t-1sqrt3right)sqrt3right)Bigvert_0^(e-1)^1/3$$
                            which is
                            $$3left(dfraclnleft(left(mathrme-1right)^frac23-sqrt[3]mathrme-1+1right)6+dfracarctanleft(frac2cdotsqrt3sqrt[3]mathrme-1-sqrt33right)sqrt3-dfraclnleft(sqrt[3]mathrme-1+1right)3+dfracpi2cdot3^frac32right)$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Aug 10 at 20:03









                            Ahmad Bazzi

                            3,0601419




                            3,0601419






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2878721%2fevaluate-int-01-fracdxex-11-3%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                這個網誌中的熱門文章

                                How to combine Bézier curves to a surface?

                                Carbon dioxide

                                Why am i infinitely getting the same tweet with the Twitter Search API?