Where does this series converges $1+frac1+22!+frac1+2+33!+cdots$
Clash Royale CLAN TAG#URR8PPP
up vote
7
down vote
favorite
Consider the following series,
$$1+frac1+22!+frac1+2+33!+cdots$$
My Efforts
The series can be written in compact for as,
$$sum_n=1^inftyn(n+1)over 2n!$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^inftyn over n!)$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^infty1 over (n-1)!)$$
Now
$$sum_n=1^infty1 over (n-1)!=1+1+1over 2!+1over 3!+cdots=e$$
First summand can be simplified as,
$$sum_n=1^inftyn over (n-1)!$$
But where does it converge? Any hints?
Edit: Thank you for all the quick replies. I now realize it was so easy. I just had to use $n=n-1+1$.
calculus sequences-and-series
add a comment |Â
up vote
7
down vote
favorite
Consider the following series,
$$1+frac1+22!+frac1+2+33!+cdots$$
My Efforts
The series can be written in compact for as,
$$sum_n=1^inftyn(n+1)over 2n!$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^inftyn over n!)$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^infty1 over (n-1)!)$$
Now
$$sum_n=1^infty1 over (n-1)!=1+1+1over 2!+1over 3!+cdots=e$$
First summand can be simplified as,
$$sum_n=1^inftyn over (n-1)!$$
But where does it converge? Any hints?
Edit: Thank you for all the quick replies. I now realize it was so easy. I just had to use $n=n-1+1$.
calculus sequences-and-series
1
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45
add a comment |Â
up vote
7
down vote
favorite
up vote
7
down vote
favorite
Consider the following series,
$$1+frac1+22!+frac1+2+33!+cdots$$
My Efforts
The series can be written in compact for as,
$$sum_n=1^inftyn(n+1)over 2n!$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^inftyn over n!)$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^infty1 over (n-1)!)$$
Now
$$sum_n=1^infty1 over (n-1)!=1+1+1over 2!+1over 3!+cdots=e$$
First summand can be simplified as,
$$sum_n=1^inftyn over (n-1)!$$
But where does it converge? Any hints?
Edit: Thank you for all the quick replies. I now realize it was so easy. I just had to use $n=n-1+1$.
calculus sequences-and-series
Consider the following series,
$$1+frac1+22!+frac1+2+33!+cdots$$
My Efforts
The series can be written in compact for as,
$$sum_n=1^inftyn(n+1)over 2n!$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^inftyn over n!)$$
$$=1over 2(sum_n=1^inftyn^2over n!+sum_n=1^infty1 over (n-1)!)$$
Now
$$sum_n=1^infty1 over (n-1)!=1+1+1over 2!+1over 3!+cdots=e$$
First summand can be simplified as,
$$sum_n=1^inftyn over (n-1)!$$
But where does it converge? Any hints?
Edit: Thank you for all the quick replies. I now realize it was so easy. I just had to use $n=n-1+1$.
calculus sequences-and-series
calculus sequences-and-series
edited Sep 9 at 11:07
Nosrati
22.8k61951
22.8k61951
asked Sep 9 at 9:42
StammeringMathematician
89217
89217
1
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45
add a comment |Â
1
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45
1
1
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45
add a comment |Â
6 Answers
6
active
oldest
votes
up vote
10
down vote
accepted
Hint:
$$
sum_n=1^inftyn over (n-1)! = sum_n=1^inftyn - 1 + 1 over (n-1)!
$$
$$
= sum_n=2^infty1 over (n-2)! + sum_n=1^infty 1 over (n-1)!
$$
add a comment |Â
up vote
3
down vote
beginalign
sum_n=1^inftyn(n+1)over 2n!
&= sum_n=1^inftyn-1+2over 2(n-1)! \
&= sum_n=2^inftydfrac12(n-2)!+sum_n=1^inftydfrac1(n-1)! \
&= dfrac12e+e \
&= colorbluedfrac32e
endalign
add a comment |Â
up vote
2
down vote
Hint: $sum_k=1 fracn^2n! x^n =e^x (x^2 + x)$.
This can easily be proven by considering the Taylor expansion of $e^x$, multiplying, and making the change of variable.
add a comment |Â
up vote
2
down vote
To me, the series is summarized as $$sum_1^inftyfracn+12(n-1)!$$ instead! Now, use the ratio test.
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
add a comment |Â
up vote
2
down vote
HInt: when $ngeq 2$, $$fracn (n-1)!=fracn-1+1(n-1)!=frac1(n-2)!+frac1(n-1)!$$
add a comment |Â
up vote
2
down vote
$sum_n=1^inftyfracnleft(n-1right)!=1+sum_n=2^inftyfracleft(n-1right)+1left(n-1right)!=1+sum_n=0^inftyfrac1n!+sum_n=1^inftyfrac1n!=1+e+(e-1)=2e$
add a comment |Â
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
10
down vote
accepted
Hint:
$$
sum_n=1^inftyn over (n-1)! = sum_n=1^inftyn - 1 + 1 over (n-1)!
$$
$$
= sum_n=2^infty1 over (n-2)! + sum_n=1^infty 1 over (n-1)!
$$
add a comment |Â
up vote
10
down vote
accepted
Hint:
$$
sum_n=1^inftyn over (n-1)! = sum_n=1^inftyn - 1 + 1 over (n-1)!
$$
$$
= sum_n=2^infty1 over (n-2)! + sum_n=1^infty 1 over (n-1)!
$$
add a comment |Â
up vote
10
down vote
accepted
up vote
10
down vote
accepted
Hint:
$$
sum_n=1^inftyn over (n-1)! = sum_n=1^inftyn - 1 + 1 over (n-1)!
$$
$$
= sum_n=2^infty1 over (n-2)! + sum_n=1^infty 1 over (n-1)!
$$
Hint:
$$
sum_n=1^inftyn over (n-1)! = sum_n=1^inftyn - 1 + 1 over (n-1)!
$$
$$
= sum_n=2^infty1 over (n-2)! + sum_n=1^infty 1 over (n-1)!
$$
edited Sep 9 at 9:47
Shobhit
5,24222452
5,24222452
answered Sep 9 at 9:47
Nilotpal Kanti Sinha
3,85921435
3,85921435
add a comment |Â
add a comment |Â
up vote
3
down vote
beginalign
sum_n=1^inftyn(n+1)over 2n!
&= sum_n=1^inftyn-1+2over 2(n-1)! \
&= sum_n=2^inftydfrac12(n-2)!+sum_n=1^inftydfrac1(n-1)! \
&= dfrac12e+e \
&= colorbluedfrac32e
endalign
add a comment |Â
up vote
3
down vote
beginalign
sum_n=1^inftyn(n+1)over 2n!
&= sum_n=1^inftyn-1+2over 2(n-1)! \
&= sum_n=2^inftydfrac12(n-2)!+sum_n=1^inftydfrac1(n-1)! \
&= dfrac12e+e \
&= colorbluedfrac32e
endalign
add a comment |Â
up vote
3
down vote
up vote
3
down vote
beginalign
sum_n=1^inftyn(n+1)over 2n!
&= sum_n=1^inftyn-1+2over 2(n-1)! \
&= sum_n=2^inftydfrac12(n-2)!+sum_n=1^inftydfrac1(n-1)! \
&= dfrac12e+e \
&= colorbluedfrac32e
endalign
beginalign
sum_n=1^inftyn(n+1)over 2n!
&= sum_n=1^inftyn-1+2over 2(n-1)! \
&= sum_n=2^inftydfrac12(n-2)!+sum_n=1^inftydfrac1(n-1)! \
&= dfrac12e+e \
&= colorbluedfrac32e
endalign
edited Sep 9 at 11:06
answered Sep 9 at 9:49
Nosrati
22.8k61951
22.8k61951
add a comment |Â
add a comment |Â
up vote
2
down vote
Hint: $sum_k=1 fracn^2n! x^n =e^x (x^2 + x)$.
This can easily be proven by considering the Taylor expansion of $e^x$, multiplying, and making the change of variable.
add a comment |Â
up vote
2
down vote
Hint: $sum_k=1 fracn^2n! x^n =e^x (x^2 + x)$.
This can easily be proven by considering the Taylor expansion of $e^x$, multiplying, and making the change of variable.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint: $sum_k=1 fracn^2n! x^n =e^x (x^2 + x)$.
This can easily be proven by considering the Taylor expansion of $e^x$, multiplying, and making the change of variable.
Hint: $sum_k=1 fracn^2n! x^n =e^x (x^2 + x)$.
This can easily be proven by considering the Taylor expansion of $e^x$, multiplying, and making the change of variable.
answered Sep 9 at 9:47
PackSciences
41616
41616
add a comment |Â
add a comment |Â
up vote
2
down vote
To me, the series is summarized as $$sum_1^inftyfracn+12(n-1)!$$ instead! Now, use the ratio test.
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
add a comment |Â
up vote
2
down vote
To me, the series is summarized as $$sum_1^inftyfracn+12(n-1)!$$ instead! Now, use the ratio test.
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
add a comment |Â
up vote
2
down vote
up vote
2
down vote
To me, the series is summarized as $$sum_1^inftyfracn+12(n-1)!$$ instead! Now, use the ratio test.
To me, the series is summarized as $$sum_1^inftyfracn+12(n-1)!$$ instead! Now, use the ratio test.
answered Sep 9 at 9:47
mrs
58.5k750143
58.5k750143
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
add a comment |Â
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
How does the ratio test tell where the series converges to?
â GoodDeeds
Sep 9 at 9:48
add a comment |Â
up vote
2
down vote
HInt: when $ngeq 2$, $$fracn (n-1)!=fracn-1+1(n-1)!=frac1(n-2)!+frac1(n-1)!$$
add a comment |Â
up vote
2
down vote
HInt: when $ngeq 2$, $$fracn (n-1)!=fracn-1+1(n-1)!=frac1(n-2)!+frac1(n-1)!$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
HInt: when $ngeq 2$, $$fracn (n-1)!=fracn-1+1(n-1)!=frac1(n-2)!+frac1(n-1)!$$
HInt: when $ngeq 2$, $$fracn (n-1)!=fracn-1+1(n-1)!=frac1(n-2)!+frac1(n-1)!$$
answered Sep 9 at 9:48
Riemann
3,0881321
3,0881321
add a comment |Â
add a comment |Â
up vote
2
down vote
$sum_n=1^inftyfracnleft(n-1right)!=1+sum_n=2^inftyfracleft(n-1right)+1left(n-1right)!=1+sum_n=0^inftyfrac1n!+sum_n=1^inftyfrac1n!=1+e+(e-1)=2e$
add a comment |Â
up vote
2
down vote
$sum_n=1^inftyfracnleft(n-1right)!=1+sum_n=2^inftyfracleft(n-1right)+1left(n-1right)!=1+sum_n=0^inftyfrac1n!+sum_n=1^inftyfrac1n!=1+e+(e-1)=2e$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
$sum_n=1^inftyfracnleft(n-1right)!=1+sum_n=2^inftyfracleft(n-1right)+1left(n-1right)!=1+sum_n=0^inftyfrac1n!+sum_n=1^inftyfrac1n!=1+e+(e-1)=2e$
$sum_n=1^inftyfracnleft(n-1right)!=1+sum_n=2^inftyfracleft(n-1right)+1left(n-1right)!=1+sum_n=0^inftyfrac1n!+sum_n=1^inftyfrac1n!=1+e+(e-1)=2e$
answered Sep 9 at 9:49
drhab
89.3k541123
89.3k541123
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910607%2fwhere-does-this-series-converges-1-frac122-frac1233-cdots%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Your sum is equal to $$frac32e$$
â Dr. Sonnhard Graubner
Sep 9 at 9:45