What is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?




I think we will use Holder inequality , try to transform the expression before using the inequality










share|cite|improve this question























  • Are the $$x,y,z$$ real numbers?
    – Dr. Sonnhard Graubner
    Sep 9 at 12:15










  • yeah they are real numbers
    – contestant IMO 2020
    Sep 9 at 12:41














up vote
0
down vote

favorite













what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?




I think we will use Holder inequality , try to transform the expression before using the inequality










share|cite|improve this question























  • Are the $$x,y,z$$ real numbers?
    – Dr. Sonnhard Graubner
    Sep 9 at 12:15










  • yeah they are real numbers
    – contestant IMO 2020
    Sep 9 at 12:41












up vote
0
down vote

favorite









up vote
0
down vote

favorite












what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?




I think we will use Holder inequality , try to transform the expression before using the inequality










share|cite|improve this question
















what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?




I think we will use Holder inequality , try to transform the expression before using the inequality







inequality examples-counterexamples radicals maxima-minima






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 9 at 12:52









Michael Rozenberg

89.3k1582179




89.3k1582179










asked Sep 9 at 11:41









contestant IMO 2020

406




406











  • Are the $$x,y,z$$ real numbers?
    – Dr. Sonnhard Graubner
    Sep 9 at 12:15










  • yeah they are real numbers
    – contestant IMO 2020
    Sep 9 at 12:41
















  • Are the $$x,y,z$$ real numbers?
    – Dr. Sonnhard Graubner
    Sep 9 at 12:15










  • yeah they are real numbers
    – contestant IMO 2020
    Sep 9 at 12:41















Are the $$x,y,z$$ real numbers?
– Dr. Sonnhard Graubner
Sep 9 at 12:15




Are the $$x,y,z$$ real numbers?
– Dr. Sonnhard Graubner
Sep 9 at 12:15












yeah they are real numbers
– contestant IMO 2020
Sep 9 at 12:41




yeah they are real numbers
– contestant IMO 2020
Sep 9 at 12:41










1 Answer
1






active

oldest

votes

















up vote
0
down vote













If the expressions under the radicals can be negative then the answer is:



Does not exist.



Try $x=y=0$ and $zrightarrow+infty$.



Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.



Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.



Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.



Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.






share|cite|improve this answer






















  • no it does exist
    – contestant IMO 2020
    Sep 9 at 14:09











  • @Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
    – Michael Rozenberg
    Sep 9 at 14:34










  • -**how ?**- ??
    – contestant IMO 2020
    Sep 9 at 14:54










  • @Abderrahmane Driouch I added something. See now.
    – Michael Rozenberg
    Sep 9 at 15:04










  • my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
    – contestant IMO 2020
    Sep 9 at 15:40










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910706%2fwhat-is-the-maximal-value-of-sqrt31x-y-sqrt314y-z-sqrt319%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













If the expressions under the radicals can be negative then the answer is:



Does not exist.



Try $x=y=0$ and $zrightarrow+infty$.



Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.



Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.



Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.



Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.






share|cite|improve this answer






















  • no it does exist
    – contestant IMO 2020
    Sep 9 at 14:09











  • @Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
    – Michael Rozenberg
    Sep 9 at 14:34










  • -**how ?**- ??
    – contestant IMO 2020
    Sep 9 at 14:54










  • @Abderrahmane Driouch I added something. See now.
    – Michael Rozenberg
    Sep 9 at 15:04










  • my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
    – contestant IMO 2020
    Sep 9 at 15:40














up vote
0
down vote













If the expressions under the radicals can be negative then the answer is:



Does not exist.



Try $x=y=0$ and $zrightarrow+infty$.



Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.



Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.



Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.



Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.






share|cite|improve this answer






















  • no it does exist
    – contestant IMO 2020
    Sep 9 at 14:09











  • @Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
    – Michael Rozenberg
    Sep 9 at 14:34










  • -**how ?**- ??
    – contestant IMO 2020
    Sep 9 at 14:54










  • @Abderrahmane Driouch I added something. See now.
    – Michael Rozenberg
    Sep 9 at 15:04










  • my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
    – contestant IMO 2020
    Sep 9 at 15:40












up vote
0
down vote










up vote
0
down vote









If the expressions under the radicals can be negative then the answer is:



Does not exist.



Try $x=y=0$ and $zrightarrow+infty$.



Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.



Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.



Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.



Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.






share|cite|improve this answer














If the expressions under the radicals can be negative then the answer is:



Does not exist.



Try $x=y=0$ and $zrightarrow+infty$.



Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.



Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.



Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.



Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Sep 9 at 21:15

























answered Sep 9 at 12:40









Michael Rozenberg

89.3k1582179




89.3k1582179











  • no it does exist
    – contestant IMO 2020
    Sep 9 at 14:09











  • @Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
    – Michael Rozenberg
    Sep 9 at 14:34










  • -**how ?**- ??
    – contestant IMO 2020
    Sep 9 at 14:54










  • @Abderrahmane Driouch I added something. See now.
    – Michael Rozenberg
    Sep 9 at 15:04










  • my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
    – contestant IMO 2020
    Sep 9 at 15:40
















  • no it does exist
    – contestant IMO 2020
    Sep 9 at 14:09











  • @Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
    – Michael Rozenberg
    Sep 9 at 14:34










  • -**how ?**- ??
    – contestant IMO 2020
    Sep 9 at 14:54










  • @Abderrahmane Driouch I added something. See now.
    – Michael Rozenberg
    Sep 9 at 15:04










  • my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
    – contestant IMO 2020
    Sep 9 at 15:40















no it does exist
– contestant IMO 2020
Sep 9 at 14:09





no it does exist
– contestant IMO 2020
Sep 9 at 14:09













@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
– Michael Rozenberg
Sep 9 at 14:34




@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
– Michael Rozenberg
Sep 9 at 14:34












-**how ?**- ??
– contestant IMO 2020
Sep 9 at 14:54




-**how ?**- ??
– contestant IMO 2020
Sep 9 at 14:54












@Abderrahmane Driouch I added something. See now.
– Michael Rozenberg
Sep 9 at 15:04




@Abderrahmane Driouch I added something. See now.
– Michael Rozenberg
Sep 9 at 15:04












my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
– contestant IMO 2020
Sep 9 at 15:40




my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
– contestant IMO 2020
Sep 9 at 15:40

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910706%2fwhat-is-the-maximal-value-of-sqrt31x-y-sqrt314y-z-sqrt319%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?