What is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?
I think we will use Holder inequality , try to transform the expression before using the inequality
inequality examples-counterexamples radicals maxima-minima
add a comment |Â
up vote
0
down vote
favorite
what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?
I think we will use Holder inequality , try to transform the expression before using the inequality
inequality examples-counterexamples radicals maxima-minima
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?
I think we will use Holder inequality , try to transform the expression before using the inequality
inequality examples-counterexamples radicals maxima-minima
what is the maximal value of $sqrt[3]1+(x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)$?
I think we will use Holder inequality , try to transform the expression before using the inequality
inequality examples-counterexamples radicals maxima-minima
inequality examples-counterexamples radicals maxima-minima
edited Sep 9 at 12:52
Michael Rozenberg
89.3k1582179
89.3k1582179
asked Sep 9 at 11:41
contestant IMO 2020
406
406
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41
add a comment |Â
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
If the expressions under the radicals can be negative then the answer is:
Does not exist.
Try $x=y=0$ and $zrightarrow+infty$.
Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.
Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.
Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.
Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??
â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
 |Â
show 15 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
If the expressions under the radicals can be negative then the answer is:
Does not exist.
Try $x=y=0$ and $zrightarrow+infty$.
Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.
Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.
Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.
Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??
â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
 |Â
show 15 more comments
up vote
0
down vote
If the expressions under the radicals can be negative then the answer is:
Does not exist.
Try $x=y=0$ and $zrightarrow+infty$.
Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.
Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.
Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.
Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??
â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
 |Â
show 15 more comments
up vote
0
down vote
up vote
0
down vote
If the expressions under the radicals can be negative then the answer is:
Does not exist.
Try $x=y=0$ and $zrightarrow+infty$.
Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.
Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.
Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.
Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.
If the expressions under the radicals can be negative then the answer is:
Does not exist.
Try $x=y=0$ and $zrightarrow+infty$.
Because for $x=y=0$ and $zrightarrow+infty$ we obtain:
$$sqrt[3]1+x-y+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)rightarrow1+sqrt[3]1+9z-sqrt[3]4z-1=$$
$$=1+frac1+9z-(4z-1)sqrt[3](1+9z)^2+sqrt[3](1+9z)(4z-1)+sqrt[3](4z-1)^2=$$
$$=1+fracfrac2sqrt[3]z^2+sqrt[3]zsqrt[3](frac1z+9)^2+sqrt[3](frac1z+9)(4-frac1z)+sqrt[3](4-frac1z)^2rightarrow+infty.$$
If it means that $1+x-ygeq0$, $1+4(y-z)geq0$ and $1+9(z-x)geq0$, we can use the following reasoning.
Let $1+x-y=a^3$, $1+4(y-z)=8b^3$ and $1+9(y-z)=27c^3,$ where $a$, $b$ and $c$ are non-negatives.
Thus, we need to find the maximum of $a+2b+3c$, where $$a^3-1+frac8b^3-14+frac27c^3-19=0$$ or
$$36(a^3+2b^3+3c^3)=49.$$
But by Holder
$$49=36(a^3+2b^3+3c^3)=(1+2+3)^2(a^3+2b^3+3c^3)geq(a+2b+3c)^3,$$ which gives
$$a+2b+3cleqsqrt[3]49.$$
The equality occurs for $$(1,2,3)||(a^3,2b^3,2c^3),$$ which gives
$a=b=c=k$ for some value of $k$.
Thus, $$k+2k+3k=sqrt[3]49,$$ which gives
$$a=b=c=fracsqrt[3]496$$ and we got the following system:
$$1+x-y=frac49216$$ and $$1+4(y-z)=frac4927,$$ which is possible for $$(x,y,z)=left(0,frac167216,frac4172right)$$and we can say that $sqrt[3]49$ is a maximal value.
edited Sep 9 at 21:15
answered Sep 9 at 12:40
Michael Rozenberg
89.3k1582179
89.3k1582179
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??
â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
 |Â
show 15 more comments
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??
â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
no it does exist
â contestant IMO 2020
Sep 9 at 14:09
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
@Abderrahmane Driouch Try to prove that your expression closes to $+infty.$
â Michael Rozenberg
Sep 9 at 14:34
-**how ?**-
??â contestant IMO 2020
Sep 9 at 14:54
-**how ?**-
??â contestant IMO 2020
Sep 9 at 14:54
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
@Abderrahmane Driouch I added something. See now.
â Michael Rozenberg
Sep 9 at 15:04
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
my try $A=sqrt[3]1(+x-y)+sqrt[3]1+4(y-z)+sqrt[3]1+9(z-x)=sqrt[3]1times sqrt[3]1+x-y+sqrt[3]4times sqrt[3]frac14+y-z+sqrt[3]9times sqrtfrac19+z-x$ En appliquant Holder avec p=3 et $q=frac32$: $Alesqrt[3]1+x-y+frac14+y-z+frac19+z-x+sqrt[3](sqrt1+sqrt4+sqrt9)^2=sqrt[3]frac4936+sqrt[3]36=4,410$
â contestant IMO 2020
Sep 9 at 15:40
 |Â
show 15 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910706%2fwhat-is-the-maximal-value-of-sqrt31x-y-sqrt314y-z-sqrt319%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Are the $$x,y,z$$ real numbers?
â Dr. Sonnhard Graubner
Sep 9 at 12:15
yeah they are real numbers
â contestant IMO 2020
Sep 9 at 12:41