A different method of evaluating $ intfrac1sqrtsin^3(x)cdotsin(x+alpha),dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
-3
down vote

favorite
2












I was practicing indefinite integrals and came to this integral:



$$
intfrac 1sqrtsin^3(x)cdotsin(x+alpha),dx.
$$



Everywhere there is only one method given for solving this question
which involves dividing numerator and denominator by $sin^2(x).$



However, I wanted to know if there was any other method for solving this or not?










share|cite|improve this question























  • Divide numerator & denominator by $cos^2x$ or $sin^2x$
    – lab bhattacharjee
    Sep 4 at 13:30










  • @labbhattacharjee I wanted to know if there was any other method for solving this or not ??
    – JIM
    Sep 4 at 13:42














up vote
-3
down vote

favorite
2












I was practicing indefinite integrals and came to this integral:



$$
intfrac 1sqrtsin^3(x)cdotsin(x+alpha),dx.
$$



Everywhere there is only one method given for solving this question
which involves dividing numerator and denominator by $sin^2(x).$



However, I wanted to know if there was any other method for solving this or not?










share|cite|improve this question























  • Divide numerator & denominator by $cos^2x$ or $sin^2x$
    – lab bhattacharjee
    Sep 4 at 13:30










  • @labbhattacharjee I wanted to know if there was any other method for solving this or not ??
    – JIM
    Sep 4 at 13:42












up vote
-3
down vote

favorite
2









up vote
-3
down vote

favorite
2






2





I was practicing indefinite integrals and came to this integral:



$$
intfrac 1sqrtsin^3(x)cdotsin(x+alpha),dx.
$$



Everywhere there is only one method given for solving this question
which involves dividing numerator and denominator by $sin^2(x).$



However, I wanted to know if there was any other method for solving this or not?










share|cite|improve this question















I was practicing indefinite integrals and came to this integral:



$$
intfrac 1sqrtsin^3(x)cdotsin(x+alpha),dx.
$$



Everywhere there is only one method given for solving this question
which involves dividing numerator and denominator by $sin^2(x).$



However, I wanted to know if there was any other method for solving this or not?







integration trigonometry indefinite-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 9 at 14:03









paulplusx

1,059318




1,059318










asked Sep 4 at 13:29









JIM

385




385











  • Divide numerator & denominator by $cos^2x$ or $sin^2x$
    – lab bhattacharjee
    Sep 4 at 13:30










  • @labbhattacharjee I wanted to know if there was any other method for solving this or not ??
    – JIM
    Sep 4 at 13:42
















  • Divide numerator & denominator by $cos^2x$ or $sin^2x$
    – lab bhattacharjee
    Sep 4 at 13:30










  • @labbhattacharjee I wanted to know if there was any other method for solving this or not ??
    – JIM
    Sep 4 at 13:42















Divide numerator & denominator by $cos^2x$ or $sin^2x$
– lab bhattacharjee
Sep 4 at 13:30




Divide numerator & denominator by $cos^2x$ or $sin^2x$
– lab bhattacharjee
Sep 4 at 13:30












@labbhattacharjee I wanted to know if there was any other method for solving this or not ??
– JIM
Sep 4 at 13:42




@labbhattacharjee I wanted to know if there was any other method for solving this or not ??
– JIM
Sep 4 at 13:42










1 Answer
1






active

oldest

votes

















up vote
5
down vote













So you want to find another method here is one



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtsinleft(x+aright),mathrmdx$$



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$



$$sinleft(xright)=dfrac1cscleft(xright)$$
$$cosleft(xright)=dfraccotleft(xright)cscleft(xright)$$



$$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



$$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



Substitute $u=cotleft(xright)$ Thus $mathrmdx=-dfrac1csc^2left(xright),mathrmdu$



$$I=-displaystyleintdfrac1sqrtsinleft(aright)u+cosleft(aright),mathrmdu$$



$$v=sinleft(aright)u+cosleft(aright)$$
$$mathrmdu=dfrac1sinleft(aright),mathrmdv$$
$$I=-classsteps-nodecssIdsteps-node-3dfrac1sinleft(aright)displaystyleintdfrac1sqrtv,mathrmdv$$



$$I=-dfrac2sqrtvsinleft(aright)$$
$$I=-dfrac2sqrtsinleft(aright)u+cosleft(aright)sinleft(aright)$$



$$u=cotleft(xright)$$
$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)$$



$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)+C$$






share|cite|improve this answer






















  • i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
    – JIM
    Sep 4 at 15:39











  • I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
    – Deepesh Meena
    Sep 4 at 16:16











  • I also edited that the answer so you can understand what I am trying to do here
    – Deepesh Meena
    Sep 4 at 16:20










  • no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
    – JIM
    Sep 4 at 16:21










  • take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
    – Deepesh Meena
    Sep 4 at 16:22











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2905067%2fa-different-method-of-evaluating-int-frac1-sqrt-sin3x-cdot-sinx-alph%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
5
down vote













So you want to find another method here is one



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtsinleft(x+aright),mathrmdx$$



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$



$$sinleft(xright)=dfrac1cscleft(xright)$$
$$cosleft(xright)=dfraccotleft(xright)cscleft(xright)$$



$$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



$$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



Substitute $u=cotleft(xright)$ Thus $mathrmdx=-dfrac1csc^2left(xright),mathrmdu$



$$I=-displaystyleintdfrac1sqrtsinleft(aright)u+cosleft(aright),mathrmdu$$



$$v=sinleft(aright)u+cosleft(aright)$$
$$mathrmdu=dfrac1sinleft(aright),mathrmdv$$
$$I=-classsteps-nodecssIdsteps-node-3dfrac1sinleft(aright)displaystyleintdfrac1sqrtv,mathrmdv$$



$$I=-dfrac2sqrtvsinleft(aright)$$
$$I=-dfrac2sqrtsinleft(aright)u+cosleft(aright)sinleft(aright)$$



$$u=cotleft(xright)$$
$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)$$



$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)+C$$






share|cite|improve this answer






















  • i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
    – JIM
    Sep 4 at 15:39











  • I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
    – Deepesh Meena
    Sep 4 at 16:16











  • I also edited that the answer so you can understand what I am trying to do here
    – Deepesh Meena
    Sep 4 at 16:20










  • no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
    – JIM
    Sep 4 at 16:21










  • take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
    – Deepesh Meena
    Sep 4 at 16:22















up vote
5
down vote













So you want to find another method here is one



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtsinleft(x+aright),mathrmdx$$



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$



$$sinleft(xright)=dfrac1cscleft(xright)$$
$$cosleft(xright)=dfraccotleft(xright)cscleft(xright)$$



$$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



$$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



Substitute $u=cotleft(xright)$ Thus $mathrmdx=-dfrac1csc^2left(xright),mathrmdu$



$$I=-displaystyleintdfrac1sqrtsinleft(aright)u+cosleft(aright),mathrmdu$$



$$v=sinleft(aright)u+cosleft(aright)$$
$$mathrmdu=dfrac1sinleft(aright),mathrmdv$$
$$I=-classsteps-nodecssIdsteps-node-3dfrac1sinleft(aright)displaystyleintdfrac1sqrtv,mathrmdv$$



$$I=-dfrac2sqrtvsinleft(aright)$$
$$I=-dfrac2sqrtsinleft(aright)u+cosleft(aright)sinleft(aright)$$



$$u=cotleft(xright)$$
$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)$$



$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)+C$$






share|cite|improve this answer






















  • i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
    – JIM
    Sep 4 at 15:39











  • I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
    – Deepesh Meena
    Sep 4 at 16:16











  • I also edited that the answer so you can understand what I am trying to do here
    – Deepesh Meena
    Sep 4 at 16:20










  • no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
    – JIM
    Sep 4 at 16:21










  • take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
    – Deepesh Meena
    Sep 4 at 16:22













up vote
5
down vote










up vote
5
down vote









So you want to find another method here is one



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtsinleft(x+aright),mathrmdx$$



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$



$$sinleft(xright)=dfrac1cscleft(xright)$$
$$cosleft(xright)=dfraccotleft(xright)cscleft(xright)$$



$$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



$$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



Substitute $u=cotleft(xright)$ Thus $mathrmdx=-dfrac1csc^2left(xright),mathrmdu$



$$I=-displaystyleintdfrac1sqrtsinleft(aright)u+cosleft(aright),mathrmdu$$



$$v=sinleft(aright)u+cosleft(aright)$$
$$mathrmdu=dfrac1sinleft(aright),mathrmdv$$
$$I=-classsteps-nodecssIdsteps-node-3dfrac1sinleft(aright)displaystyleintdfrac1sqrtv,mathrmdv$$



$$I=-dfrac2sqrtvsinleft(aright)$$
$$I=-dfrac2sqrtsinleft(aright)u+cosleft(aright)sinleft(aright)$$



$$u=cotleft(xright)$$
$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)$$



$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)+C$$






share|cite|improve this answer














So you want to find another method here is one



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtsinleft(x+aright),mathrmdx$$



$$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$



$$sinleft(xright)=dfrac1cscleft(xright)$$
$$cosleft(xright)=dfraccotleft(xright)cscleft(xright)$$



$$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



$$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$



Substitute $u=cotleft(xright)$ Thus $mathrmdx=-dfrac1csc^2left(xright),mathrmdu$



$$I=-displaystyleintdfrac1sqrtsinleft(aright)u+cosleft(aright),mathrmdu$$



$$v=sinleft(aright)u+cosleft(aright)$$
$$mathrmdu=dfrac1sinleft(aright),mathrmdv$$
$$I=-classsteps-nodecssIdsteps-node-3dfrac1sinleft(aright)displaystyleintdfrac1sqrtv,mathrmdv$$



$$I=-dfrac2sqrtvsinleft(aright)$$
$$I=-dfrac2sqrtsinleft(aright)u+cosleft(aright)sinleft(aright)$$



$$u=cotleft(xright)$$
$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)$$



$$I=-dfrac2sqrtsinleft(aright)cotleft(xright)+cosleft(aright)sinleft(aright)+C$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Sep 4 at 16:20

























answered Sep 4 at 15:25









Deepesh Meena

4,21621025




4,21621025











  • i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
    – JIM
    Sep 4 at 15:39











  • I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
    – Deepesh Meena
    Sep 4 at 16:16











  • I also edited that the answer so you can understand what I am trying to do here
    – Deepesh Meena
    Sep 4 at 16:20










  • no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
    – JIM
    Sep 4 at 16:21










  • take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
    – Deepesh Meena
    Sep 4 at 16:22

















  • i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
    – JIM
    Sep 4 at 15:39











  • I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
    – Deepesh Meena
    Sep 4 at 16:16











  • I also edited that the answer so you can understand what I am trying to do here
    – Deepesh Meena
    Sep 4 at 16:20










  • no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
    – JIM
    Sep 4 at 16:21










  • take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
    – Deepesh Meena
    Sep 4 at 16:22
















i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
– JIM
Sep 4 at 15:39





i did not get how you got this $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$
– JIM
Sep 4 at 15:39













I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
– Deepesh Meena
Sep 4 at 16:16





I wrote it like that because I wanted to use $$mathrmdx=-dfrac1csc^2left(xright),mathrmdu$$ you can simply write that $$I=displaystyleintclasssteps-nodecssIdsteps-node-1left(dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ $$-1cdot-1=1$$
– Deepesh Meena
Sep 4 at 16:16













I also edited that the answer so you can understand what I am trying to do here
– Deepesh Meena
Sep 4 at 16:20




I also edited that the answer so you can understand what I am trying to do here
– Deepesh Meena
Sep 4 at 16:20












no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
– JIM
Sep 4 at 16:21




no I mean how did you get this step $$I=displaystyleint-classsteps-nodecssIdsteps-node-1left(-dfrac1sqrtsinleft(aright)cotleft(xright)+cosleft(aright)right)classsteps-nodecssIdsteps-node-2csc^2left(xright),mathrmdx$$ from this step $$I=displaystyleintdfrac1sin^frac32left(xright)sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright),mathrmdx$$ ?
– JIM
Sep 4 at 16:21












take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
– Deepesh Meena
Sep 4 at 16:22





take $sin(x)$ common from $$sqrtcosleft(aright)sinleft(xright)+sinleft(aright)cosleft(xright)$$ $$sin^1/2(x)sqrtcosleft(aright)+sinleft(aright)cotleft(xright)$$
– Deepesh Meena
Sep 4 at 16:22


















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2905067%2fa-different-method-of-evaluating-int-frac1-sqrt-sin3x-cdot-sinx-alph%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?