Evaluating the integral $int_0^inftyfracx^3x^2+a^2,mathrmdx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite













If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.




I tried a lot but finally stuck at an intermediate form :



$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$










share|cite|improve this question



















  • 1




    Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
    – Rebellos
    Sep 9 at 8:46










  • Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
    – gimusi
    Sep 9 at 8:49







  • 4




    Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
    – Maam
    Sep 9 at 8:56











  • $$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
    – Henry Lee
    Sep 9 at 15:53














up vote
4
down vote

favorite













If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.




I tried a lot but finally stuck at an intermediate form :



$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$










share|cite|improve this question



















  • 1




    Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
    – Rebellos
    Sep 9 at 8:46










  • Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
    – gimusi
    Sep 9 at 8:49







  • 4




    Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
    – Maam
    Sep 9 at 8:56











  • $$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
    – Henry Lee
    Sep 9 at 15:53












up vote
4
down vote

favorite









up vote
4
down vote

favorite












If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.




I tried a lot but finally stuck at an intermediate form :



$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$










share|cite|improve this question
















If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.




I tried a lot but finally stuck at an intermediate form :



$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$







integration improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 17 at 11:22









amWhy

190k27221433




190k27221433










asked Sep 9 at 8:42









Jammi

211




211







  • 1




    Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
    – Rebellos
    Sep 9 at 8:46










  • Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
    – gimusi
    Sep 9 at 8:49







  • 4




    Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
    – Maam
    Sep 9 at 8:56











  • $$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
    – Henry Lee
    Sep 9 at 15:53












  • 1




    Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
    – Rebellos
    Sep 9 at 8:46










  • Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
    – gimusi
    Sep 9 at 8:49







  • 4




    Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
    – Maam
    Sep 9 at 8:56











  • $$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
    – Henry Lee
    Sep 9 at 15:53







1




1




Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
– Rebellos
Sep 9 at 8:46




Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
– Rebellos
Sep 9 at 8:46












Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
– gimusi
Sep 9 at 8:49





Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
– gimusi
Sep 9 at 8:49





4




4




Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
– Maam
Sep 9 at 8:56





Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
– Maam
Sep 9 at 8:56













$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
– Henry Lee
Sep 9 at 15:53




$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
– Henry Lee
Sep 9 at 15:53










3 Answers
3






active

oldest

votes

















up vote
8
down vote













$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$



Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$



$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$



$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$



The integral is divergent.






share|cite|improve this answer





























    up vote
    1
    down vote













    $$I=int_0^inftyfracx^3x^2+a^2dx$$
    firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$



    For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
    so our integral becomes:




    $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$




    Both parts to this integral are divergent and so the integral cannot be calculated






    share|cite|improve this answer





























      up vote
      1
      down vote













      The integral does not converge.



      Let



      $$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$



      By the Schwinger parametrization we have



      $$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$



      The last integral can be calculated by the Feynman trick. Using this result, one gets



      $$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$



      which is infinity since



      $$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$






      share|cite|improve this answer






















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910554%2fevaluating-the-integral-int-0-infty-fracx3x2a2-mathrmdx%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        8
        down vote













        $$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$



        Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$



        $$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$



        $$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
        $$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
        $$I=dfracu2-dfraca^2lnleft(uright)2+c$$
        $$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$



        The integral is divergent.






        share|cite|improve this answer


























          up vote
          8
          down vote













          $$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$



          Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$



          $$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$



          $$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
          $$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
          $$I=dfracu2-dfraca^2lnleft(uright)2+c$$
          $$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$



          The integral is divergent.






          share|cite|improve this answer
























            up vote
            8
            down vote










            up vote
            8
            down vote









            $$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$



            Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$



            $$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$



            $$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
            $$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
            $$I=dfracu2-dfraca^2lnleft(uright)2+c$$
            $$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$



            The integral is divergent.






            share|cite|improve this answer














            $$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$



            Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$



            $$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$



            $$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
            $$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
            $$I=dfracu2-dfraca^2lnleft(uright)2+c$$
            $$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$



            The integral is divergent.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Sep 15 at 0:12

























            answered Sep 9 at 8:48









            Deepesh Meena

            4,20621025




            4,20621025




















                up vote
                1
                down vote













                $$I=int_0^inftyfracx^3x^2+a^2dx$$
                firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$



                For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
                so our integral becomes:




                $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$




                Both parts to this integral are divergent and so the integral cannot be calculated






                share|cite|improve this answer


























                  up vote
                  1
                  down vote













                  $$I=int_0^inftyfracx^3x^2+a^2dx$$
                  firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$



                  For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
                  so our integral becomes:




                  $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$




                  Both parts to this integral are divergent and so the integral cannot be calculated






                  share|cite|improve this answer
























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    $$I=int_0^inftyfracx^3x^2+a^2dx$$
                    firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$



                    For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
                    so our integral becomes:




                    $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$




                    Both parts to this integral are divergent and so the integral cannot be calculated






                    share|cite|improve this answer














                    $$I=int_0^inftyfracx^3x^2+a^2dx$$
                    firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$



                    For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
                    so our integral becomes:




                    $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$




                    Both parts to this integral are divergent and so the integral cannot be calculated







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Sep 14 at 15:42









                    Deepesh Meena

                    4,20621025




                    4,20621025










                    answered Sep 9 at 15:51









                    Henry Lee

                    94513




                    94513




















                        up vote
                        1
                        down vote













                        The integral does not converge.



                        Let



                        $$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$



                        By the Schwinger parametrization we have



                        $$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$



                        The last integral can be calculated by the Feynman trick. Using this result, one gets



                        $$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$



                        which is infinity since



                        $$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$






                        share|cite|improve this answer


























                          up vote
                          1
                          down vote













                          The integral does not converge.



                          Let



                          $$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$



                          By the Schwinger parametrization we have



                          $$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$



                          The last integral can be calculated by the Feynman trick. Using this result, one gets



                          $$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$



                          which is infinity since



                          $$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$






                          share|cite|improve this answer
























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            The integral does not converge.



                            Let



                            $$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$



                            By the Schwinger parametrization we have



                            $$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$



                            The last integral can be calculated by the Feynman trick. Using this result, one gets



                            $$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$



                            which is infinity since



                            $$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$






                            share|cite|improve this answer














                            The integral does not converge.



                            Let



                            $$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$



                            By the Schwinger parametrization we have



                            $$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$



                            The last integral can be calculated by the Feynman trick. Using this result, one gets



                            $$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$



                            which is infinity since



                            $$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Sep 17 at 2:26

























                            answered Sep 13 at 22:02









                            Dinesh Shankar

                            588115




                            588115



























                                 

                                draft saved


                                draft discarded















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910554%2fevaluating-the-integral-int-0-infty-fracx3x2a2-mathrmdx%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                這個網誌中的熱門文章

                                How to combine Bézier curves to a surface?

                                Mutual Information Always Non-negative

                                Why am i infinitely getting the same tweet with the Twitter Search API?