Evaluating the integral $int_0^inftyfracx^3x^2+a^2,mathrmdx$
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.
I tried a lot but finally stuck at an intermediate form :
$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$
integration improper-integrals
add a comment |Â
up vote
4
down vote
favorite
If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.
I tried a lot but finally stuck at an intermediate form :
$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$
integration improper-integrals
1
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
4
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.
I tried a lot but finally stuck at an intermediate form :
$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$
integration improper-integrals
If $displaystyleint_0^inftydfracx^3x^2+a^2,mathrmdx=largedisplaystyledfrac1ka^6$, then find the value of $displaystyledfrack8$.
I tried a lot but finally stuck at an intermediate form :
$$beginalign
&int_0^inftydfracx^3x^2+a^2,mathrmdx, textwith, x^2=t,2x~mathrmdx=mathrmdt\
&=frac12int_0^inftydfrac(x^2)(2x)x^2+a^2,mathrmdx=frac12int_0^inftydfractt+a^2,mathrmdt=frac12int_0^inftydfract+a^2-a^2t+a^2,mathrmdt\
&=frac12left[int_0^inftymathrmdt-int_0^inftydfraca^2t+a^2,mathrmdtright]=frac12left[t|_0^infty-a^2ln(a^2+t)|_0^inftyright]
endalign$$
integration improper-integrals
integration improper-integrals
edited Sep 17 at 11:22
amWhy
190k27221433
190k27221433
asked Sep 9 at 8:42
Jammi
211
211
1
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
4
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53
add a comment |Â
1
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
4
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53
1
1
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
4
4
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
8
down vote
$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$
Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$
$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$
$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$
The integral is divergent.
add a comment |Â
up vote
1
down vote
$$I=int_0^inftyfracx^3x^2+a^2dx$$
firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$
For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
so our integral becomes:
$$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$
Both parts to this integral are divergent and so the integral cannot be calculated
add a comment |Â
up vote
1
down vote
The integral does not converge.
Let
$$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$
By the Schwinger parametrization we have
$$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$
The last integral can be calculated by the Feynman trick. Using this result, one gets
$$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$
which is infinity since
$$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$
Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$
$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$
$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$
The integral is divergent.
add a comment |Â
up vote
8
down vote
$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$
Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$
$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$
$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$
The integral is divergent.
add a comment |Â
up vote
8
down vote
up vote
8
down vote
$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$
Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$
$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$
$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$
The integral is divergent.
$$I=displaystyleintdfracx^3x^2+a^2,mathrmdx$$
Substitute $u=x^2+a^2$ thus $mathrmdx=dfrac12x,mathrmdu$
$$I=classsteps-nodecssIdsteps-node-1dfrac12displaystyleintdfracu-a^2u,mathrmdu$$
$$I=dfrac12displaystyleintleft(1-dfraca^2uright)mathrmdu$$
$$I=dfrac12displaystyleint1,mathrmdu-dfrac12classsteps-nodecssIdsteps-node-2a^2displaystyleintdfrac1u,mathrmdu$$
$$I=dfracu2-dfraca^2lnleft(uright)2+c$$
$$I=left(dfracx^2+a^22-dfraca^2lnleft(x^2+a^2right)2right)biggr|_x=0^infty$$
The integral is divergent.
edited Sep 15 at 0:12
answered Sep 9 at 8:48
Deepesh Meena
4,20621025
4,20621025
add a comment |Â
add a comment |Â
up vote
1
down vote
$$I=int_0^inftyfracx^3x^2+a^2dx$$
firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$
For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
so our integral becomes:
$$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$
Both parts to this integral are divergent and so the integral cannot be calculated
add a comment |Â
up vote
1
down vote
$$I=int_0^inftyfracx^3x^2+a^2dx$$
firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$
For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
so our integral becomes:
$$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$
Both parts to this integral are divergent and so the integral cannot be calculated
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$I=int_0^inftyfracx^3x^2+a^2dx$$
firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$
For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
so our integral becomes:
$$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$
Both parts to this integral are divergent and so the integral cannot be calculated
$$I=int_0^inftyfracx^3x^2+a^2dx$$
firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$
For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$
so our integral becomes:
$$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$
Both parts to this integral are divergent and so the integral cannot be calculated
edited Sep 14 at 15:42
Deepesh Meena
4,20621025
4,20621025
answered Sep 9 at 15:51
Henry Lee
94513
94513
add a comment |Â
add a comment |Â
up vote
1
down vote
The integral does not converge.
Let
$$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$
By the Schwinger parametrization we have
$$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$
The last integral can be calculated by the Feynman trick. Using this result, one gets
$$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$
which is infinity since
$$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$
add a comment |Â
up vote
1
down vote
The integral does not converge.
Let
$$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$
By the Schwinger parametrization we have
$$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$
The last integral can be calculated by the Feynman trick. Using this result, one gets
$$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$
which is infinity since
$$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The integral does not converge.
Let
$$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$
By the Schwinger parametrization we have
$$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$
The last integral can be calculated by the Feynman trick. Using this result, one gets
$$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$
which is infinity since
$$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$
The integral does not converge.
Let
$$ I=int_0^inftydfracx^3x^2+a^2,mathrmdx.$$
By the Schwinger parametrization we have
$$ I=int_0^infty mathrmdt, exp(-ta^2)int_0^infty mathrmdx, x^3 expleft(-tx^2right).$$
The last integral can be calculated by the Feynman trick. Using this result, one gets
$$I=int_0^infty mathrmdt,frac sqrtpiexp(-ta^2)4 t^3/2=fracsqrtpia4Gamma left(-1,0right),$$
which is infinity since
$$ Gammaleft(-1,0right)equivint_0^infty mathrmdt, t^-3/2exp(-t)=tildeinfty.$$
edited Sep 17 at 2:26
answered Sep 13 at 22:02
Dinesh Shankar
588115
588115
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910554%2fevaluating-the-integral-int-0-infty-fracx3x2a2-mathrmdx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Please refrain from posting photos and make a post using MathJax so that's easily readable but also searchable.
â Rebellos
Sep 9 at 8:46
Your derivation seems to be correct and the integral diverges, just collect t in the last expression and then take the limit $to infty$.
â gimusi
Sep 9 at 8:49
4
Your anti-derivative is correct. The integral diverges - this can be seen without computation, because the function is continuous on $[0,infty$ and behaves asymptotically like $x.$
â Maam
Sep 9 at 8:56
$$I=int_0^inftyfracx^3x^2+a^2dx$$ firstly, let $u=x^2+a^2$ so $fracdudx=2x therefore dx=fracdu2x$ For $x=0$, $u=a^2$. For $xtoinfty$, $lim_xto inftyleft(x^2+a^2right)toinfty$ so our integral becomes: $$I=frac12int_a^2^inftyfracx^3x^2+a^2.fracdux=frac12int_a^2^inftyfracx^2x^2+a^2dx=frac12int_a^2^inftyfracu-a^2udu=frac12int_a^2^infty du-fraca^22int_a^2^inftyfrac1udu$$ Both parts to this integral are divergent and so the integral cannot be calculated
â Henry Lee
Sep 9 at 15:53