How to solve this Indefinite Integral step by step?
Clash Royale CLAN TAG#URR8PPP
up vote
-1
down vote
favorite
Integrate
$$
int
fracsqrt(x^2+1)^5x^6
; dx
$$
Trying this question but unable to solve.
Wolfram does it with hyperbolic substitution, I have been asked to solve this integral without hyperbolic substitution.
indefinite-integrals
add a comment |Â
up vote
-1
down vote
favorite
Integrate
$$
int
fracsqrt(x^2+1)^5x^6
; dx
$$
Trying this question but unable to solve.
Wolfram does it with hyperbolic substitution, I have been asked to solve this integral without hyperbolic substitution.
indefinite-integrals
1
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
1
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45
add a comment |Â
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
Integrate
$$
int
fracsqrt(x^2+1)^5x^6
; dx
$$
Trying this question but unable to solve.
Wolfram does it with hyperbolic substitution, I have been asked to solve this integral without hyperbolic substitution.
indefinite-integrals
Integrate
$$
int
fracsqrt(x^2+1)^5x^6
; dx
$$
Trying this question but unable to solve.
Wolfram does it with hyperbolic substitution, I have been asked to solve this integral without hyperbolic substitution.
indefinite-integrals
edited Aug 24 at 9:56
asked Aug 24 at 9:35
Chirag Mahajan
156
156
1
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
1
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45
add a comment |Â
1
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
1
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45
1
1
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
1
1
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
Let $x=tan u$ therefore $$int
fracsqrt(x^2+1)^5x^6
; dx
=intdfrac1cos^7 udfraccos^6 usin^6 udu=intdfraccos udusin^6 u(1-sin^2 u)$$let $w=sin u$ therefore $$intdfraccos udusin^6 u(1-sin^2 u)=intdfracdww^6(1-w^2)=intdfrac0.51-w+dfrac0.51+w+dfrac1w^6+dfrac1w^4+dfrac1w^2dw\=0.5ln|dfracw+1w-1|-dfrac15w^5-dfrac13w^3-dfrac1w+C$$
add a comment |Â
up vote
1
down vote
HINT
beginalign*
fracsqrt(x^2+1)^5x^6 = frac1xfracsqrt(x^2+1)^5x^5 = frac1xsqrtfrac(x^2+1)^5x^10 = frac1xsqrtleft(fracx^2+1x^2right)^5 = frac1xsqrtleft(1 + frac1x^2right)^5
endalign*
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Let $x=tan u$ therefore $$int
fracsqrt(x^2+1)^5x^6
; dx
=intdfrac1cos^7 udfraccos^6 usin^6 udu=intdfraccos udusin^6 u(1-sin^2 u)$$let $w=sin u$ therefore $$intdfraccos udusin^6 u(1-sin^2 u)=intdfracdww^6(1-w^2)=intdfrac0.51-w+dfrac0.51+w+dfrac1w^6+dfrac1w^4+dfrac1w^2dw\=0.5ln|dfracw+1w-1|-dfrac15w^5-dfrac13w^3-dfrac1w+C$$
add a comment |Â
up vote
2
down vote
accepted
Let $x=tan u$ therefore $$int
fracsqrt(x^2+1)^5x^6
; dx
=intdfrac1cos^7 udfraccos^6 usin^6 udu=intdfraccos udusin^6 u(1-sin^2 u)$$let $w=sin u$ therefore $$intdfraccos udusin^6 u(1-sin^2 u)=intdfracdww^6(1-w^2)=intdfrac0.51-w+dfrac0.51+w+dfrac1w^6+dfrac1w^4+dfrac1w^2dw\=0.5ln|dfracw+1w-1|-dfrac15w^5-dfrac13w^3-dfrac1w+C$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Let $x=tan u$ therefore $$int
fracsqrt(x^2+1)^5x^6
; dx
=intdfrac1cos^7 udfraccos^6 usin^6 udu=intdfraccos udusin^6 u(1-sin^2 u)$$let $w=sin u$ therefore $$intdfraccos udusin^6 u(1-sin^2 u)=intdfracdww^6(1-w^2)=intdfrac0.51-w+dfrac0.51+w+dfrac1w^6+dfrac1w^4+dfrac1w^2dw\=0.5ln|dfracw+1w-1|-dfrac15w^5-dfrac13w^3-dfrac1w+C$$
Let $x=tan u$ therefore $$int
fracsqrt(x^2+1)^5x^6
; dx
=intdfrac1cos^7 udfraccos^6 usin^6 udu=intdfraccos udusin^6 u(1-sin^2 u)$$let $w=sin u$ therefore $$intdfraccos udusin^6 u(1-sin^2 u)=intdfracdww^6(1-w^2)=intdfrac0.51-w+dfrac0.51+w+dfrac1w^6+dfrac1w^4+dfrac1w^2dw\=0.5ln|dfracw+1w-1|-dfrac15w^5-dfrac13w^3-dfrac1w+C$$
edited Aug 24 at 10:03
answered Aug 24 at 9:58
Mostafa Ayaz
10.1k3730
10.1k3730
add a comment |Â
add a comment |Â
up vote
1
down vote
HINT
beginalign*
fracsqrt(x^2+1)^5x^6 = frac1xfracsqrt(x^2+1)^5x^5 = frac1xsqrtfrac(x^2+1)^5x^10 = frac1xsqrtleft(fracx^2+1x^2right)^5 = frac1xsqrtleft(1 + frac1x^2right)^5
endalign*
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
add a comment |Â
up vote
1
down vote
HINT
beginalign*
fracsqrt(x^2+1)^5x^6 = frac1xfracsqrt(x^2+1)^5x^5 = frac1xsqrtfrac(x^2+1)^5x^10 = frac1xsqrtleft(fracx^2+1x^2right)^5 = frac1xsqrtleft(1 + frac1x^2right)^5
endalign*
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
add a comment |Â
up vote
1
down vote
up vote
1
down vote
HINT
beginalign*
fracsqrt(x^2+1)^5x^6 = frac1xfracsqrt(x^2+1)^5x^5 = frac1xsqrtfrac(x^2+1)^5x^10 = frac1xsqrtleft(fracx^2+1x^2right)^5 = frac1xsqrtleft(1 + frac1x^2right)^5
endalign*
HINT
beginalign*
fracsqrt(x^2+1)^5x^6 = frac1xfracsqrt(x^2+1)^5x^5 = frac1xsqrtfrac(x^2+1)^5x^10 = frac1xsqrtleft(fracx^2+1x^2right)^5 = frac1xsqrtleft(1 + frac1x^2right)^5
endalign*
answered Aug 24 at 23:09
APC89
816215
816215
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
add a comment |Â
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Further what is the step ?
â Chirag Mahajan
Aug 25 at 2:39
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
Make the substitution $1/x = tan(theta)$.
â APC89
Aug 25 at 2:51
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892936%2fhow-to-solve-this-indefinite-integral-step-by-step%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Please use MathJax syntax in order for the question to be more clear!
â Anastassis Kapetanakis
Aug 24 at 9:41
So what did you try?
â Matthew Leingang
Aug 24 at 9:44
1
Let $x = tan u$ perhaps...
â Sean Roberson
Aug 24 at 9:45