How do integrate equation with two derivatives?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I need to integrate next equation:
$$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$
where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?
integration differential-equations derivatives indefinite-integrals
add a comment |Â
up vote
0
down vote
favorite
I need to integrate next equation:
$$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$
where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?
integration differential-equations derivatives indefinite-integrals
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I need to integrate next equation:
$$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$
where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?
integration differential-equations derivatives indefinite-integrals
I need to integrate next equation:
$$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$
where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?
integration differential-equations derivatives indefinite-integrals
asked Aug 24 at 9:45
nick_name
1209
1209
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
$$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
rm dzp left( z right) right) left( p left( z right) +k+
frac k^2p left( z right) right)$$
$$m left( p left( z right) +k+frac k^2p left( z right)
right) ^-1= left( r-z left( r-1 right) right) ^4frac
rm drm dzp left( z right)$$
$$frac m left( r-z left( r-1 right) right) ^4= left( p
left( z right) +k+frac k^2p left( z right) right)
frac rm drm dzp left( z right)$$
$$int !frac m left( r-z left( r-1 right) right) ^4
,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
$$
$$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
-r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
$$
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
$$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
rm dzp left( z right) right) left( p left( z right) +k+
frac k^2p left( z right) right)$$
$$m left( p left( z right) +k+frac k^2p left( z right)
right) ^-1= left( r-z left( r-1 right) right) ^4frac
rm drm dzp left( z right)$$
$$frac m left( r-z left( r-1 right) right) ^4= left( p
left( z right) +k+frac k^2p left( z right) right)
frac rm drm dzp left( z right)$$
$$int !frac m left( r-z left( r-1 right) right) ^4
,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
$$
$$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
-r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
$$
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
add a comment |Â
up vote
1
down vote
accepted
$$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
rm dzp left( z right) right) left( p left( z right) +k+
frac k^2p left( z right) right)$$
$$m left( p left( z right) +k+frac k^2p left( z right)
right) ^-1= left( r-z left( r-1 right) right) ^4frac
rm drm dzp left( z right)$$
$$frac m left( r-z left( r-1 right) right) ^4= left( p
left( z right) +k+frac k^2p left( z right) right)
frac rm drm dzp left( z right)$$
$$int !frac m left( r-z left( r-1 right) right) ^4
,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
$$
$$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
-r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
$$
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
$$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
rm dzp left( z right) right) left( p left( z right) +k+
frac k^2p left( z right) right)$$
$$m left( p left( z right) +k+frac k^2p left( z right)
right) ^-1= left( r-z left( r-1 right) right) ^4frac
rm drm dzp left( z right)$$
$$frac m left( r-z left( r-1 right) right) ^4= left( p
left( z right) +k+frac k^2p left( z right) right)
frac rm drm dzp left( z right)$$
$$int !frac m left( r-z left( r-1 right) right) ^4
,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
$$
$$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
-r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
$$
$$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
rm dzp left( z right) right) left( p left( z right) +k+
frac k^2p left( z right) right)$$
$$m left( p left( z right) +k+frac k^2p left( z right)
right) ^-1= left( r-z left( r-1 right) right) ^4frac
rm drm dzp left( z right)$$
$$frac m left( r-z left( r-1 right) right) ^4= left( p
left( z right) +k+frac k^2p left( z right) right)
frac rm drm dzp left( z right)$$
$$int !frac m left( r-z left( r-1 right) right) ^4
,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
$$
$$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
-r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
$$
edited Aug 24 at 10:53
answered Aug 24 at 10:35
Mariusz Iwaniuk
1,7211615
1,7211615
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
add a comment |Â
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
â nick_name
Aug 24 at 10:50
It is as it need to be now.
â nick_name
Aug 24 at 10:51
It is as it need to be now.
â nick_name
Aug 24 at 10:51
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892946%2fhow-do-integrate-equation-with-two-derivatives%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password