How do integrate equation with two derivatives?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I need to integrate next equation:



$$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$



where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?







share|cite|improve this question
























    up vote
    0
    down vote

    favorite












    I need to integrate next equation:



    $$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$



    where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?







    share|cite|improve this question






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I need to integrate next equation:



      $$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$



      where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?







      share|cite|improve this question












      I need to integrate next equation:



      $$m cdot dz=left( r-z(r-1) right)^4 cdot dfracdpdz cdot left( p+k+dfrack^2pright)dz$$



      where $m$, $r$, $k$ are constants and $p=p(z)$. How to integrate this equation-its right side? Would be appropriate to cut terms $dz$ because of the term $r-z(r-1)$?









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 24 at 9:45









      nick_name

      1209




      1209




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          $$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
          rm dzp left( z right) right) left( p left( z right) +k+
          frac k^2p left( z right) right)$$



          $$m left( p left( z right) +k+frac k^2p left( z right)
          right) ^-1= left( r-z left( r-1 right) right) ^4frac
          rm drm dzp left( z right)$$



          $$frac m left( r-z left( r-1 right) right) ^4= left( p
          left( z right) +k+frac k^2p left( z right) right)
          frac rm drm dzp left( z right)$$



          $$int !frac m left( r-z left( r-1 right) right) ^4
          ,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
          $$



          $$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
          -r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
          $$






          share|cite|improve this answer






















          • Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
            – nick_name
            Aug 24 at 10:50











          • It is as it need to be now.
            – nick_name
            Aug 24 at 10:51










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892946%2fhow-do-integrate-equation-with-two-derivatives%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          $$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
          rm dzp left( z right) right) left( p left( z right) +k+
          frac k^2p left( z right) right)$$



          $$m left( p left( z right) +k+frac k^2p left( z right)
          right) ^-1= left( r-z left( r-1 right) right) ^4frac
          rm drm dzp left( z right)$$



          $$frac m left( r-z left( r-1 right) right) ^4= left( p
          left( z right) +k+frac k^2p left( z right) right)
          frac rm drm dzp left( z right)$$



          $$int !frac m left( r-z left( r-1 right) right) ^4
          ,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
          $$



          $$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
          -r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
          $$






          share|cite|improve this answer






















          • Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
            – nick_name
            Aug 24 at 10:50











          • It is as it need to be now.
            – nick_name
            Aug 24 at 10:51














          up vote
          1
          down vote



          accepted










          $$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
          rm dzp left( z right) right) left( p left( z right) +k+
          frac k^2p left( z right) right)$$



          $$m left( p left( z right) +k+frac k^2p left( z right)
          right) ^-1= left( r-z left( r-1 right) right) ^4frac
          rm drm dzp left( z right)$$



          $$frac m left( r-z left( r-1 right) right) ^4= left( p
          left( z right) +k+frac k^2p left( z right) right)
          frac rm drm dzp left( z right)$$



          $$int !frac m left( r-z left( r-1 right) right) ^4
          ,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
          $$



          $$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
          -r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
          $$






          share|cite|improve this answer






















          • Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
            – nick_name
            Aug 24 at 10:50











          • It is as it need to be now.
            – nick_name
            Aug 24 at 10:51












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          $$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
          rm dzp left( z right) right) left( p left( z right) +k+
          frac k^2p left( z right) right)$$



          $$m left( p left( z right) +k+frac k^2p left( z right)
          right) ^-1= left( r-z left( r-1 right) right) ^4frac
          rm drm dzp left( z right)$$



          $$frac m left( r-z left( r-1 right) right) ^4= left( p
          left( z right) +k+frac k^2p left( z right) right)
          frac rm drm dzp left( z right)$$



          $$int !frac m left( r-z left( r-1 right) right) ^4
          ,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
          $$



          $$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
          -r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
          $$






          share|cite|improve this answer














          $$m= left( r-z left( r-1 right) right) ^4 left( frac rm d
          rm dzp left( z right) right) left( p left( z right) +k+
          frac k^2p left( z right) right)$$



          $$m left( p left( z right) +k+frac k^2p left( z right)
          right) ^-1= left( r-z left( r-1 right) right) ^4frac
          rm drm dzp left( z right)$$



          $$frac m left( r-z left( r-1 right) right) ^4= left( p
          left( z right) +k+frac k^2p left( z right) right)
          frac rm drm dzp left( z right)$$



          $$int !frac m left( r-z left( r-1 right) right) ^4
          ,rm dz=int !p(z)+k+frac k^2p(z),rm dp(z)
          $$



          $$-1/3,frac m left( left( 1-r right) z+r right) ^3 left( 1
          -r right) =1/2,p(z)^2+kp(z)+k^2ln left( p(z) right) +C
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 24 at 10:53

























          answered Aug 24 at 10:35









          Mariusz Iwaniuk

          1,7211615




          1,7211615











          • Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
            – nick_name
            Aug 24 at 10:50











          • It is as it need to be now.
            – nick_name
            Aug 24 at 10:51
















          • Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
            – nick_name
            Aug 24 at 10:50











          • It is as it need to be now.
            – nick_name
            Aug 24 at 10:51















          Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
          – nick_name
          Aug 24 at 10:50





          Thanks, it works, but is the result of $int dfracdz(r-z(r-z))^4$ that what you wrote, or $dfrac13(r-1)(r-z(r-z))^3$ ?
          – nick_name
          Aug 24 at 10:50













          It is as it need to be now.
          – nick_name
          Aug 24 at 10:51




          It is as it need to be now.
          – nick_name
          Aug 24 at 10:51

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892946%2fhow-do-integrate-equation-with-two-derivatives%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?