Changing the side of a triangle without changing area?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












$triangle ABC$ has vertices $A=(8,2)$, $B=(0,6)$ and $C=(-3,2)$. Point $C$ can be moved along a certain line with points $A$ and $B$ remaining stationary so that the area of $ABC$ will not change? What is the slope of that line?



The answer is $-frac12$, but I don't understand why or even how to come to this conclusion. Working backwards, I see that $-frac12$ is also the slope of line $AB$, but I don't know why this information is related or how to solve another problem of this type but not the exact same.







share|cite|improve this question






















  • Draw a line through C parallel to AB. So the height of the triangle remains constant.
    – N.S.JOHN
    Apr 17 '16 at 5:22











  • The line that height is constant is parallel.
    – Takahiro Waki
    Apr 17 '16 at 7:09














up vote
1
down vote

favorite












$triangle ABC$ has vertices $A=(8,2)$, $B=(0,6)$ and $C=(-3,2)$. Point $C$ can be moved along a certain line with points $A$ and $B$ remaining stationary so that the area of $ABC$ will not change? What is the slope of that line?



The answer is $-frac12$, but I don't understand why or even how to come to this conclusion. Working backwards, I see that $-frac12$ is also the slope of line $AB$, but I don't know why this information is related or how to solve another problem of this type but not the exact same.







share|cite|improve this question






















  • Draw a line through C parallel to AB. So the height of the triangle remains constant.
    – N.S.JOHN
    Apr 17 '16 at 5:22











  • The line that height is constant is parallel.
    – Takahiro Waki
    Apr 17 '16 at 7:09












up vote
1
down vote

favorite









up vote
1
down vote

favorite











$triangle ABC$ has vertices $A=(8,2)$, $B=(0,6)$ and $C=(-3,2)$. Point $C$ can be moved along a certain line with points $A$ and $B$ remaining stationary so that the area of $ABC$ will not change? What is the slope of that line?



The answer is $-frac12$, but I don't understand why or even how to come to this conclusion. Working backwards, I see that $-frac12$ is also the slope of line $AB$, but I don't know why this information is related or how to solve another problem of this type but not the exact same.







share|cite|improve this question














$triangle ABC$ has vertices $A=(8,2)$, $B=(0,6)$ and $C=(-3,2)$. Point $C$ can be moved along a certain line with points $A$ and $B$ remaining stationary so that the area of $ABC$ will not change? What is the slope of that line?



The answer is $-frac12$, but I don't understand why or even how to come to this conclusion. Working backwards, I see that $-frac12$ is also the slope of line $AB$, but I don't know why this information is related or how to solve another problem of this type but not the exact same.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 17 '16 at 5:44







user249332

















asked Apr 17 '16 at 5:16









Julia

112




112











  • Draw a line through C parallel to AB. So the height of the triangle remains constant.
    – N.S.JOHN
    Apr 17 '16 at 5:22











  • The line that height is constant is parallel.
    – Takahiro Waki
    Apr 17 '16 at 7:09
















  • Draw a line through C parallel to AB. So the height of the triangle remains constant.
    – N.S.JOHN
    Apr 17 '16 at 5:22











  • The line that height is constant is parallel.
    – Takahiro Waki
    Apr 17 '16 at 7:09















Draw a line through C parallel to AB. So the height of the triangle remains constant.
– N.S.JOHN
Apr 17 '16 at 5:22





Draw a line through C parallel to AB. So the height of the triangle remains constant.
– N.S.JOHN
Apr 17 '16 at 5:22













The line that height is constant is parallel.
– Takahiro Waki
Apr 17 '16 at 7:09




The line that height is constant is parallel.
– Takahiro Waki
Apr 17 '16 at 7:09










1 Answer
1






active

oldest

votes

















up vote
0
down vote













You're almost there. You can move the vertex of a triangle along a line parallel to its base (the opposite side) without changing the area. This is called a shear transform. In this case, just treat point $C$ as the vertex and $AB$ as the base. The base has slope $-frac 12$, which is also the slope of all lines parallel to this.



The reason is simple: the perpendicular height $h$ (dropped from the vertex to the base extended as needed) does not change. The base $b$ remains the same, so the area $A = frac 12 bcdot h$ also doesn't change.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1745947%2fchanging-the-side-of-a-triangle-without-changing-area%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    You're almost there. You can move the vertex of a triangle along a line parallel to its base (the opposite side) without changing the area. This is called a shear transform. In this case, just treat point $C$ as the vertex and $AB$ as the base. The base has slope $-frac 12$, which is also the slope of all lines parallel to this.



    The reason is simple: the perpendicular height $h$ (dropped from the vertex to the base extended as needed) does not change. The base $b$ remains the same, so the area $A = frac 12 bcdot h$ also doesn't change.






    share|cite|improve this answer
























      up vote
      0
      down vote













      You're almost there. You can move the vertex of a triangle along a line parallel to its base (the opposite side) without changing the area. This is called a shear transform. In this case, just treat point $C$ as the vertex and $AB$ as the base. The base has slope $-frac 12$, which is also the slope of all lines parallel to this.



      The reason is simple: the perpendicular height $h$ (dropped from the vertex to the base extended as needed) does not change. The base $b$ remains the same, so the area $A = frac 12 bcdot h$ also doesn't change.






      share|cite|improve this answer






















        up vote
        0
        down vote










        up vote
        0
        down vote









        You're almost there. You can move the vertex of a triangle along a line parallel to its base (the opposite side) without changing the area. This is called a shear transform. In this case, just treat point $C$ as the vertex and $AB$ as the base. The base has slope $-frac 12$, which is also the slope of all lines parallel to this.



        The reason is simple: the perpendicular height $h$ (dropped from the vertex to the base extended as needed) does not change. The base $b$ remains the same, so the area $A = frac 12 bcdot h$ also doesn't change.






        share|cite|improve this answer












        You're almost there. You can move the vertex of a triangle along a line parallel to its base (the opposite side) without changing the area. This is called a shear transform. In this case, just treat point $C$ as the vertex and $AB$ as the base. The base has slope $-frac 12$, which is also the slope of all lines parallel to this.



        The reason is simple: the perpendicular height $h$ (dropped from the vertex to the base extended as needed) does not change. The base $b$ remains the same, so the area $A = frac 12 bcdot h$ also doesn't change.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 17 '16 at 5:19









        Deepak

        16.1k11437




        16.1k11437



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1745947%2fchanging-the-side-of-a-triangle-without-changing-area%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?