Find $limlimits_ttoinftyx(t)$ if $x'= (x-y)(1-x^2-y^2)$, $y' = (x+y)(1-x^2-y^2)$
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:
- $fracdxdt = (x-y)(1-x^2-y^2),$
- $fracdydt = (x+y)(1-x^2-y^2),$
- $x(0) = x_0,$
- $y(0) = y_0.$
I am asked to find $lim_ttoinftyx(t).$
Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$
However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!
differential-equations systems-of-equations
 |Â
show 7 more comments
up vote
4
down vote
favorite
Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:
- $fracdxdt = (x-y)(1-x^2-y^2),$
- $fracdydt = (x+y)(1-x^2-y^2),$
- $x(0) = x_0,$
- $y(0) = y_0.$
I am asked to find $lim_ttoinftyx(t).$
Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$
However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!
differential-equations systems-of-equations
1
Use polar coordinates...
â player100
Aug 24 at 4:02
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
1
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44
 |Â
show 7 more comments
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:
- $fracdxdt = (x-y)(1-x^2-y^2),$
- $fracdydt = (x+y)(1-x^2-y^2),$
- $x(0) = x_0,$
- $y(0) = y_0.$
I am asked to find $lim_ttoinftyx(t).$
Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$
However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!
differential-equations systems-of-equations
Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:
- $fracdxdt = (x-y)(1-x^2-y^2),$
- $fracdydt = (x+y)(1-x^2-y^2),$
- $x(0) = x_0,$
- $y(0) = y_0.$
I am asked to find $lim_ttoinftyx(t).$
Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$
However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!
differential-equations systems-of-equations
edited Aug 24 at 6:43
Did
243k23208443
243k23208443
asked Aug 24 at 3:02
dhk628
1,031513
1,031513
1
Use polar coordinates...
â player100
Aug 24 at 4:02
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
1
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44
 |Â
show 7 more comments
1
Use polar coordinates...
â player100
Aug 24 at 4:02
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
1
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44
1
1
Use polar coordinates...
â player100
Aug 24 at 4:02
Use polar coordinates...
â player100
Aug 24 at 4:02
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
1
1
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44
 |Â
show 7 more comments
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).
Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$
Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$
Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$
add a comment |Â
up vote
3
down vote
We first pass to polar coordinates, viz:
$x = rcos theta; ; y = r sin theta; tag 1$
$dot x = dot r cos theta - rdot theta sin theta; tag 2$
$dot y = dot r sin theta + r dot theta cos theta; tag 3$
$beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$
$beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$
$dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$
$dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
$= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$
$dot r = r(1 - r^2); tag11$
$dot theta = 1 - r^2. tag12$
Since
$x_0^2 + y_0^2 > 0, tag13$
we have
$r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$
by (11),
$0 < r < 1 Longrightarrow dot r > 0; tag15$
$1 < r Longrightarrow dot r < 0; tag16$
$r = 1 Longrightarrow dot r = 0; tag17$
it is relatively easy to see that (14)-(17) in concert imply that
$displaystyle lim_t to infty r = 1; tag18$
also, (11) and (12) together yield
$r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$
whence, integrating over $t$,
$ln r - ln r_0 = theta - theta_0, tag20$
or
$theta = ln r - ln r_0 + theta_0, tag21$
and so via (18)
$displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$
finally,
$displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
add a comment |Â
up vote
2
down vote
Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.
Then, you get the following equations:
$$beginalignfracdrdt &= r(1-r^2) \
fracdthetadt &= (1-r^2)
endalign$$
The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.
Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,
where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).
Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$
Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$
Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$
add a comment |Â
up vote
2
down vote
accepted
If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).
Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$
Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$
Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).
Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$
Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$
Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$
If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).
Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$
Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$
Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$
edited Aug 24 at 7:55
answered Aug 24 at 5:38
Sobi
2,250314
2,250314
add a comment |Â
add a comment |Â
up vote
3
down vote
We first pass to polar coordinates, viz:
$x = rcos theta; ; y = r sin theta; tag 1$
$dot x = dot r cos theta - rdot theta sin theta; tag 2$
$dot y = dot r sin theta + r dot theta cos theta; tag 3$
$beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$
$beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$
$dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$
$dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
$= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$
$dot r = r(1 - r^2); tag11$
$dot theta = 1 - r^2. tag12$
Since
$x_0^2 + y_0^2 > 0, tag13$
we have
$r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$
by (11),
$0 < r < 1 Longrightarrow dot r > 0; tag15$
$1 < r Longrightarrow dot r < 0; tag16$
$r = 1 Longrightarrow dot r = 0; tag17$
it is relatively easy to see that (14)-(17) in concert imply that
$displaystyle lim_t to infty r = 1; tag18$
also, (11) and (12) together yield
$r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$
whence, integrating over $t$,
$ln r - ln r_0 = theta - theta_0, tag20$
or
$theta = ln r - ln r_0 + theta_0, tag21$
and so via (18)
$displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$
finally,
$displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
add a comment |Â
up vote
3
down vote
We first pass to polar coordinates, viz:
$x = rcos theta; ; y = r sin theta; tag 1$
$dot x = dot r cos theta - rdot theta sin theta; tag 2$
$dot y = dot r sin theta + r dot theta cos theta; tag 3$
$beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$
$beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$
$dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$
$dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
$= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$
$dot r = r(1 - r^2); tag11$
$dot theta = 1 - r^2. tag12$
Since
$x_0^2 + y_0^2 > 0, tag13$
we have
$r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$
by (11),
$0 < r < 1 Longrightarrow dot r > 0; tag15$
$1 < r Longrightarrow dot r < 0; tag16$
$r = 1 Longrightarrow dot r = 0; tag17$
it is relatively easy to see that (14)-(17) in concert imply that
$displaystyle lim_t to infty r = 1; tag18$
also, (11) and (12) together yield
$r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$
whence, integrating over $t$,
$ln r - ln r_0 = theta - theta_0, tag20$
or
$theta = ln r - ln r_0 + theta_0, tag21$
and so via (18)
$displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$
finally,
$displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
add a comment |Â
up vote
3
down vote
up vote
3
down vote
We first pass to polar coordinates, viz:
$x = rcos theta; ; y = r sin theta; tag 1$
$dot x = dot r cos theta - rdot theta sin theta; tag 2$
$dot y = dot r sin theta + r dot theta cos theta; tag 3$
$beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$
$beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$
$dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$
$dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
$= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$
$dot r = r(1 - r^2); tag11$
$dot theta = 1 - r^2. tag12$
Since
$x_0^2 + y_0^2 > 0, tag13$
we have
$r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$
by (11),
$0 < r < 1 Longrightarrow dot r > 0; tag15$
$1 < r Longrightarrow dot r < 0; tag16$
$r = 1 Longrightarrow dot r = 0; tag17$
it is relatively easy to see that (14)-(17) in concert imply that
$displaystyle lim_t to infty r = 1; tag18$
also, (11) and (12) together yield
$r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$
whence, integrating over $t$,
$ln r - ln r_0 = theta - theta_0, tag20$
or
$theta = ln r - ln r_0 + theta_0, tag21$
and so via (18)
$displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$
finally,
$displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$
We first pass to polar coordinates, viz:
$x = rcos theta; ; y = r sin theta; tag 1$
$dot x = dot r cos theta - rdot theta sin theta; tag 2$
$dot y = dot r sin theta + r dot theta cos theta; tag 3$
$beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$
$beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$
$dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$
$dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$
$beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
$= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$
$dot r = r(1 - r^2); tag11$
$dot theta = 1 - r^2. tag12$
Since
$x_0^2 + y_0^2 > 0, tag13$
we have
$r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$
by (11),
$0 < r < 1 Longrightarrow dot r > 0; tag15$
$1 < r Longrightarrow dot r < 0; tag16$
$r = 1 Longrightarrow dot r = 0; tag17$
it is relatively easy to see that (14)-(17) in concert imply that
$displaystyle lim_t to infty r = 1; tag18$
also, (11) and (12) together yield
$r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$
whence, integrating over $t$,
$ln r - ln r_0 = theta - theta_0, tag20$
or
$theta = ln r - ln r_0 + theta_0, tag21$
and so via (18)
$displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$
finally,
$displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$
edited Aug 24 at 6:23
answered Aug 24 at 5:57
Robert Lewis
37.9k22357
37.9k22357
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
add a comment |Â
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
1
1
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
+1 really nice and complete answer @Robert
â Isham
Aug 24 at 13:40
1
1
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
@Isham: thank you sir!
â Robert Lewis
Aug 24 at 14:26
add a comment |Â
up vote
2
down vote
Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.
Then, you get the following equations:
$$beginalignfracdrdt &= r(1-r^2) \
fracdthetadt &= (1-r^2)
endalign$$
The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.
Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,
where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.
add a comment |Â
up vote
2
down vote
Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.
Then, you get the following equations:
$$beginalignfracdrdt &= r(1-r^2) \
fracdthetadt &= (1-r^2)
endalign$$
The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.
Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,
where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.
Then, you get the following equations:
$$beginalignfracdrdt &= r(1-r^2) \
fracdthetadt &= (1-r^2)
endalign$$
The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.
Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,
where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.
Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.
Then, you get the following equations:
$$beginalignfracdrdt &= r(1-r^2) \
fracdthetadt &= (1-r^2)
endalign$$
The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.
Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,
where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.
answered Aug 24 at 4:52
player100
22126
22126
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892740%2ffind-lim-limits-t-to-inftyxt-if-x-x-y1-x2-y2-y-xy1-x2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Use polar coordinates...
â player100
Aug 24 at 4:02
@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
â dhk628
Aug 24 at 4:45
1
Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
â player100
Aug 24 at 4:58
Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
â Yves Daoust
Aug 24 at 6:34
The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
â Did
Aug 24 at 6:44