Find $limlimits_ttoinftyx(t)$ if $x'= (x-y)(1-x^2-y^2)$, $y' = (x+y)(1-x^2-y^2)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
3












Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:



  • $fracdxdt = (x-y)(1-x^2-y^2),$

  • $fracdydt = (x+y)(1-x^2-y^2),$

  • $x(0) = x_0,$

  • $y(0) = y_0.$

I am asked to find $lim_ttoinftyx(t).$



Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$



However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!







share|cite|improve this question


















  • 1




    Use polar coordinates...
    – player100
    Aug 24 at 4:02










  • @player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
    – dhk628
    Aug 24 at 4:45







  • 1




    Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
    – player100
    Aug 24 at 4:58










  • Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
    – Yves Daoust
    Aug 24 at 6:34











  • The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
    – Did
    Aug 24 at 6:44















up vote
4
down vote

favorite
3












Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:



  • $fracdxdt = (x-y)(1-x^2-y^2),$

  • $fracdydt = (x+y)(1-x^2-y^2),$

  • $x(0) = x_0,$

  • $y(0) = y_0.$

I am asked to find $lim_ttoinftyx(t).$



Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$



However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!







share|cite|improve this question


















  • 1




    Use polar coordinates...
    – player100
    Aug 24 at 4:02










  • @player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
    – dhk628
    Aug 24 at 4:45







  • 1




    Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
    – player100
    Aug 24 at 4:58










  • Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
    – Yves Daoust
    Aug 24 at 6:34











  • The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
    – Did
    Aug 24 at 6:44













up vote
4
down vote

favorite
3









up vote
4
down vote

favorite
3






3





Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:



  • $fracdxdt = (x-y)(1-x^2-y^2),$

  • $fracdydt = (x+y)(1-x^2-y^2),$

  • $x(0) = x_0,$

  • $y(0) = y_0.$

I am asked to find $lim_ttoinftyx(t).$



Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$



However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!







share|cite|improve this question














Suppose $x_0,y_0$ are reals such that $x_0^2+y_0^2>0.$ Suppose $x(t)$ and $y(t)$ satisfy the following:



  • $fracdxdt = (x-y)(1-x^2-y^2),$

  • $fracdydt = (x+y)(1-x^2-y^2),$

  • $x(0) = x_0,$

  • $y(0) = y_0.$

I am asked to find $lim_ttoinftyx(t).$



Dividing the two differential equations, we have $$fracdydx = fracx+yx-y = frac1 + fracyx1-fracyx.$$
Let $v(x)=fracyx,$ so that $y = xv(x),$ and $$fracdydx = v + xfracdvdx.$$ This implies that $$xfracdvdx = frac1+v1-v - v = frac1+v^21-v.$$ Rearranging and integrating, we get $$log(x) = arctan(v)-frac12log(1+v^2)+c,$$ so $$log(x) = arctanleft(fracyxright)-frac12logleft(1+left(fracyxright)^2right)+c.$$ By writing $1+left(fracyxright)^2$ as $fracx^2+y^2x^2,$ we can simplify the above equation to $$frac12log(x^2+y^2) = arctanleft(fracyxright) + c.$$



However, I'm not sure how to proceed from this implicit equation. Any help would be much appreciated!









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 24 at 6:43









Did

243k23208443




243k23208443










asked Aug 24 at 3:02









dhk628

1,031513




1,031513







  • 1




    Use polar coordinates...
    – player100
    Aug 24 at 4:02










  • @player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
    – dhk628
    Aug 24 at 4:45







  • 1




    Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
    – player100
    Aug 24 at 4:58










  • Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
    – Yves Daoust
    Aug 24 at 6:34











  • The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
    – Did
    Aug 24 at 6:44













  • 1




    Use polar coordinates...
    – player100
    Aug 24 at 4:02










  • @player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
    – dhk628
    Aug 24 at 4:45







  • 1




    Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
    – player100
    Aug 24 at 4:58










  • Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
    – Yves Daoust
    Aug 24 at 6:34











  • The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
    – Did
    Aug 24 at 6:44








1




1




Use polar coordinates...
– player100
Aug 24 at 4:02




Use polar coordinates...
– player100
Aug 24 at 4:02












@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
– dhk628
Aug 24 at 4:45





@player100 well using polar, I can get $r = Ae^theta,$ but I'm not sure how that helps me find $lim_t to inftyx(t)..?$
– dhk628
Aug 24 at 4:45





1




1




Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
– player100
Aug 24 at 4:58




Note that $(r^2)'=(x^2+y^2)'=2(xx'+yy')$. And you can substitute your equations for $x'$ and $y'$ into that expression, and simplify.
– player100
Aug 24 at 4:58












Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
– Yves Daoust
Aug 24 at 6:34





Eliminating $t$ leads you nowhere as you are asked the limit for $ttoinfty$.
– Yves Daoust
Aug 24 at 6:34













The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
– Did
Aug 24 at 6:44





The title was wrong (you are not asked to solve the system, only to find the limit of $x(t)$) and uninformative, please see modified version.
– Did
Aug 24 at 6:44











3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).



Following @player100's suggestion, you can transform the system into
$$
begincases
dot r = r(1-r^2)\
dot theta = 1-r^2
endcases,
$$
with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$



Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
$$lim_t to infty r(t) = 1.$$



Hence our limit becomes
$$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
Now
beginalign
theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
endalign
and changing the integration variable to $u = r(s),$ so that
$$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
we obtain
beginalign
int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
= log(r(t))-log(r(t_0)).
endalign
This gives
beginalign
lim_tto inftytheta(t)
&= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
= lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
&= log(1)-log(r(t_0)) + theta(t_0)
= arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
endalign
so that
$$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$






share|cite|improve this answer





























    up vote
    3
    down vote













    We first pass to polar coordinates, viz:



    $x = rcos theta; ; y = r sin theta; tag 1$



    $dot x = dot r cos theta - rdot theta sin theta; tag 2$



    $dot y = dot r sin theta + r dot theta cos theta; tag 3$



    $beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$



    $beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$



    $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$



    $dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$



    $dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$



    $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
    $= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$



    $dot r = r(1 - r^2); tag11$



    $dot theta = 1 - r^2. tag12$



    Since



    $x_0^2 + y_0^2 > 0, tag13$



    we have



    $r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$



    by (11),



    $0 < r < 1 Longrightarrow dot r > 0; tag15$



    $1 < r Longrightarrow dot r < 0; tag16$



    $r = 1 Longrightarrow dot r = 0; tag17$



    it is relatively easy to see that (14)-(17) in concert imply that



    $displaystyle lim_t to infty r = 1; tag18$



    also, (11) and (12) together yield



    $r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$



    whence, integrating over $t$,



    $ln r - ln r_0 = theta - theta_0, tag20$



    or



    $theta = ln r - ln r_0 + theta_0, tag21$



    and so via (18)



    $displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$



    finally,



    $displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$






    share|cite|improve this answer


















    • 1




      +1 really nice and complete answer @Robert
      – Isham
      Aug 24 at 13:40






    • 1




      @Isham: thank you sir!
      – Robert Lewis
      Aug 24 at 14:26

















    up vote
    2
    down vote













    Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.



    Then, you get the following equations:
    $$beginalignfracdrdt &= r(1-r^2) \
    fracdthetadt &= (1-r^2)
    endalign$$



    The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.



    Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,



    where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892740%2ffind-lim-limits-t-to-inftyxt-if-x-x-y1-x2-y2-y-xy1-x2%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).



      Following @player100's suggestion, you can transform the system into
      $$
      begincases
      dot r = r(1-r^2)\
      dot theta = 1-r^2
      endcases,
      $$
      with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$



      Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
      $$lim_t to infty r(t) = 1.$$



      Hence our limit becomes
      $$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
      Now
      beginalign
      theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
      endalign
      and changing the integration variable to $u = r(s),$ so that
      $$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
      we obtain
      beginalign
      int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
      = log(r(t))-log(r(t_0)).
      endalign
      This gives
      beginalign
      lim_tto inftytheta(t)
      &= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
      = lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
      &= log(1)-log(r(t_0)) + theta(t_0)
      = arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
      endalign
      so that
      $$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$






      share|cite|improve this answer


























        up vote
        2
        down vote



        accepted










        If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).



        Following @player100's suggestion, you can transform the system into
        $$
        begincases
        dot r = r(1-r^2)\
        dot theta = 1-r^2
        endcases,
        $$
        with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$



        Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
        $$lim_t to infty r(t) = 1.$$



        Hence our limit becomes
        $$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
        Now
        beginalign
        theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
        endalign
        and changing the integration variable to $u = r(s),$ so that
        $$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
        we obtain
        beginalign
        int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
        = log(r(t))-log(r(t_0)).
        endalign
        This gives
        beginalign
        lim_tto inftytheta(t)
        &= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
        = lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
        &= log(1)-log(r(t_0)) + theta(t_0)
        = arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
        endalign
        so that
        $$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$






        share|cite|improve this answer
























          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).



          Following @player100's suggestion, you can transform the system into
          $$
          begincases
          dot r = r(1-r^2)\
          dot theta = 1-r^2
          endcases,
          $$
          with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$



          Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
          $$lim_t to infty r(t) = 1.$$



          Hence our limit becomes
          $$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
          Now
          beginalign
          theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
          endalign
          and changing the integration variable to $u = r(s),$ so that
          $$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
          we obtain
          beginalign
          int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
          = log(r(t))-log(r(t_0)).
          endalign
          This gives
          beginalign
          lim_tto inftytheta(t)
          &= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
          = lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
          &= log(1)-log(r(t_0)) + theta(t_0)
          = arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
          endalign
          so that
          $$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$






          share|cite|improve this answer














          If you only want to compute the limit, you don't even need to solve the equation explicitly (at least for $r$).



          Following @player100's suggestion, you can transform the system into
          $$
          begincases
          dot r = r(1-r^2)\
          dot theta = 1-r^2
          endcases,
          $$
          with $r^2 = x^2+y^2$ and $theta = arctanfracyx.$



          Then we can observe that our system rests at the origin as well as on the unit circle. Since $dot r > 0$ when $0 < r < 1,$ and $dot r < 0$ when $r>1$, we may conclude that any solution starting in $(x_0,y_0)$ with $x_0^2+y_0^2 > 0$ will be attracted to the unit circle, so that
          $$lim_t to infty r(t) = 1.$$



          Hence our limit becomes
          $$ lim_tto infty x(t) = lim_tto infty r(t)costheta(t) = lim_tto infty costheta(t) = cos left(lim_tto inftytheta(t)right). $$
          Now
          beginalign
          theta(t) - theta(t_0) &= int_t_0^t dottheta(s) , ds = int_t_0^t 1-r(s)^2 , ds,
          endalign
          and changing the integration variable to $u = r(s),$ so that
          $$du = dot r(s) , ds = r(s)(1-r(s)^2) , ds = u(1-u^2) , ds,$$
          we obtain
          beginalign
          int_t_0^t 1-(r(s))^2 , ds &= int_r(t_0)^r(t) frac1u , du
          = log(r(t))-log(r(t_0)).
          endalign
          This gives
          beginalign
          lim_tto inftytheta(t)
          &= lim_tto inftytheta(t) - theta(t_0) + theta(t_0)
          = lim_tto infty log(r(t))-log(r(t_0)) + theta(t_0)\
          &= log(1)-log(r(t_0)) + theta(t_0)
          = arctanfracy_0x_0 - logsqrtx_0^2+y_0^2,
          endalign
          so that
          $$lim_tto infty x(t) = cos left( arctanfracy_0x_0 - logsqrtx_0^2+y_0^2 right). $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 24 at 7:55

























          answered Aug 24 at 5:38









          Sobi

          2,250314




          2,250314




















              up vote
              3
              down vote













              We first pass to polar coordinates, viz:



              $x = rcos theta; ; y = r sin theta; tag 1$



              $dot x = dot r cos theta - rdot theta sin theta; tag 2$



              $dot y = dot r sin theta + r dot theta cos theta; tag 3$



              $beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$



              $beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$



              $dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$



              $dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
              $= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$



              $dot r = r(1 - r^2); tag11$



              $dot theta = 1 - r^2. tag12$



              Since



              $x_0^2 + y_0^2 > 0, tag13$



              we have



              $r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$



              by (11),



              $0 < r < 1 Longrightarrow dot r > 0; tag15$



              $1 < r Longrightarrow dot r < 0; tag16$



              $r = 1 Longrightarrow dot r = 0; tag17$



              it is relatively easy to see that (14)-(17) in concert imply that



              $displaystyle lim_t to infty r = 1; tag18$



              also, (11) and (12) together yield



              $r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$



              whence, integrating over $t$,



              $ln r - ln r_0 = theta - theta_0, tag20$



              or



              $theta = ln r - ln r_0 + theta_0, tag21$



              and so via (18)



              $displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$



              finally,



              $displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$






              share|cite|improve this answer


















              • 1




                +1 really nice and complete answer @Robert
                – Isham
                Aug 24 at 13:40






              • 1




                @Isham: thank you sir!
                – Robert Lewis
                Aug 24 at 14:26














              up vote
              3
              down vote













              We first pass to polar coordinates, viz:



              $x = rcos theta; ; y = r sin theta; tag 1$



              $dot x = dot r cos theta - rdot theta sin theta; tag 2$



              $dot y = dot r sin theta + r dot theta cos theta; tag 3$



              $beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$



              $beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$



              $dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$



              $dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
              $= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$



              $dot r = r(1 - r^2); tag11$



              $dot theta = 1 - r^2. tag12$



              Since



              $x_0^2 + y_0^2 > 0, tag13$



              we have



              $r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$



              by (11),



              $0 < r < 1 Longrightarrow dot r > 0; tag15$



              $1 < r Longrightarrow dot r < 0; tag16$



              $r = 1 Longrightarrow dot r = 0; tag17$



              it is relatively easy to see that (14)-(17) in concert imply that



              $displaystyle lim_t to infty r = 1; tag18$



              also, (11) and (12) together yield



              $r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$



              whence, integrating over $t$,



              $ln r - ln r_0 = theta - theta_0, tag20$



              or



              $theta = ln r - ln r_0 + theta_0, tag21$



              and so via (18)



              $displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$



              finally,



              $displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$






              share|cite|improve this answer


















              • 1




                +1 really nice and complete answer @Robert
                – Isham
                Aug 24 at 13:40






              • 1




                @Isham: thank you sir!
                – Robert Lewis
                Aug 24 at 14:26












              up vote
              3
              down vote










              up vote
              3
              down vote









              We first pass to polar coordinates, viz:



              $x = rcos theta; ; y = r sin theta; tag 1$



              $dot x = dot r cos theta - rdot theta sin theta; tag 2$



              $dot y = dot r sin theta + r dot theta cos theta; tag 3$



              $beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$



              $beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$



              $dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$



              $dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
              $= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$



              $dot r = r(1 - r^2); tag11$



              $dot theta = 1 - r^2. tag12$



              Since



              $x_0^2 + y_0^2 > 0, tag13$



              we have



              $r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$



              by (11),



              $0 < r < 1 Longrightarrow dot r > 0; tag15$



              $1 < r Longrightarrow dot r < 0; tag16$



              $r = 1 Longrightarrow dot r = 0; tag17$



              it is relatively easy to see that (14)-(17) in concert imply that



              $displaystyle lim_t to infty r = 1; tag18$



              also, (11) and (12) together yield



              $r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$



              whence, integrating over $t$,



              $ln r - ln r_0 = theta - theta_0, tag20$



              or



              $theta = ln r - ln r_0 + theta_0, tag21$



              and so via (18)



              $displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$



              finally,



              $displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$






              share|cite|improve this answer














              We first pass to polar coordinates, viz:



              $x = rcos theta; ; y = r sin theta; tag 1$



              $dot x = dot r cos theta - rdot theta sin theta; tag 2$



              $dot y = dot r sin theta + r dot theta cos theta; tag 3$



              $beginpmatrix dot x \ dot y endpmatrix = beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix beginpmatrix dot r \ dot theta endpmatrix; tag 4$



              $beginbmatrix cos theta & -r sin theta \ sin theta & rcos theta endbmatrix^-1 = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix ; tag 5$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix dot x \ dot y endpmatrix; tag 6$



              $dot x = (x - y)(1 - x^2 - y^2) = r(cos theta - sin theta)(1 - r^2); tag 7$



              $dot y = (x + y)(1 - x^2 - y^2) = r(cos theta + sin theta)(1 - r^2); tag 8$



              $beginpmatrix dot r \ dot theta endpmatrix = dfrac1r beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrixbeginpmatrix r(cos theta - sin theta)(1 - r^2) \ r(cos theta + sin theta)(1 - r^2)endpmatrix$
              $= (1 - r^2) beginbmatrix rcos theta & rsin theta \ -sin theta & cos theta endbmatrix beginpmatrix cos theta - sin theta \ cos theta + sin theta endpmatrix = (1 - r^2) beginpmatrix r \ 1 endpmatrix; tag10$



              $dot r = r(1 - r^2); tag11$



              $dot theta = 1 - r^2. tag12$



              Since



              $x_0^2 + y_0^2 > 0, tag13$



              we have



              $r_0^2 = x_0^2 + y_0^2 > 0 Longrightarrow r_0 > 0; tag14$



              by (11),



              $0 < r < 1 Longrightarrow dot r > 0; tag15$



              $1 < r Longrightarrow dot r < 0; tag16$



              $r = 1 Longrightarrow dot r = 0; tag17$



              it is relatively easy to see that (14)-(17) in concert imply that



              $displaystyle lim_t to infty r = 1; tag18$



              also, (11) and (12) together yield



              $r ne 0 Longrightarrow dot(ln r) = dfracdot rr = 1 - r^2 = dot theta, tag19$



              whence, integrating over $t$,



              $ln r - ln r_0 = theta - theta_0, tag20$



              or



              $theta = ln r - ln r_0 + theta_0, tag21$



              and so via (18)



              $displaystyle lim_t to infty theta = lim_t to infty ln r - ln r_0 + theta_0 = theta_0 - ln r_0; tag22$



              finally,



              $displaystyle lim_t to infty x(t) = lim_t to infty ( r cos theta) = (lim_t to infty r)( lim_t to infty cos theta) = cos (theta_0 - ln r_0). tag23$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Aug 24 at 6:23

























              answered Aug 24 at 5:57









              Robert Lewis

              37.9k22357




              37.9k22357







              • 1




                +1 really nice and complete answer @Robert
                – Isham
                Aug 24 at 13:40






              • 1




                @Isham: thank you sir!
                – Robert Lewis
                Aug 24 at 14:26












              • 1




                +1 really nice and complete answer @Robert
                – Isham
                Aug 24 at 13:40






              • 1




                @Isham: thank you sir!
                – Robert Lewis
                Aug 24 at 14:26







              1




              1




              +1 really nice and complete answer @Robert
              – Isham
              Aug 24 at 13:40




              +1 really nice and complete answer @Robert
              – Isham
              Aug 24 at 13:40




              1




              1




              @Isham: thank you sir!
              – Robert Lewis
              Aug 24 at 14:26




              @Isham: thank you sir!
              – Robert Lewis
              Aug 24 at 14:26










              up vote
              2
              down vote













              Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.



              Then, you get the following equations:
              $$beginalignfracdrdt &= r(1-r^2) \
              fracdthetadt &= (1-r^2)
              endalign$$



              The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.



              Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,



              where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.






              share|cite|improve this answer
























                up vote
                2
                down vote













                Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.



                Then, you get the following equations:
                $$beginalignfracdrdt &= r(1-r^2) \
                fracdthetadt &= (1-r^2)
                endalign$$



                The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.



                Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,



                where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.






                share|cite|improve this answer






















                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.



                  Then, you get the following equations:
                  $$beginalignfracdrdt &= r(1-r^2) \
                  fracdthetadt &= (1-r^2)
                  endalign$$



                  The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.



                  Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,



                  where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.






                  share|cite|improve this answer












                  Let $r^2 = x^2+y^2$, $x = rcostheta$, and $y = rsintheta$.



                  Then, you get the following equations:
                  $$beginalignfracdrdt &= r(1-r^2) \
                  fracdthetadt &= (1-r^2)
                  endalign$$



                  The solution to the first equation is: $r^2=fracke^2t1+ke^2t$, where $k=fracr^2_01-r_0^2$.



                  Then, the solution to the second equation is: $theta-theta_0=log fracrr_0$,



                  where $r_0^2=x_0^2+y_0^2$ and $tan theta_0= fracy_0x_0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Aug 24 at 4:52









                  player100

                  22126




                  22126



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2892740%2ffind-lim-limits-t-to-inftyxt-if-x-x-y1-x2-y2-y-xy1-x2%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      How to combine Bézier curves to a surface?

                      Mutual Information Always Non-negative

                      Why am i infinitely getting the same tweet with the Twitter Search API?