Symmetric polynomial identities: $(x,y,z)^n$ in terms of $sigma _1=x+y+z$, $sigma _2 = xy+yz+xz$ and $sigma _3 = xyz$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












In Arthur Engels "Problem Solving Strategies" book in the section on symmetric polynomials, he asks us to prove the identities below. I read up on expanding trinomials and got the quickest method to be a variation on Pascal's triangle. Is there a different method to prove these identities; perhaps recursively?



Thanks




enter image description here







share|cite|improve this question


















  • 3




    In wikipedia's article there are a few proofs.
    – user582578
    Aug 8 at 20:25










  • @floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
    – Michael Rozenberg
    Aug 9 at 8:49














up vote
0
down vote

favorite












In Arthur Engels "Problem Solving Strategies" book in the section on symmetric polynomials, he asks us to prove the identities below. I read up on expanding trinomials and got the quickest method to be a variation on Pascal's triangle. Is there a different method to prove these identities; perhaps recursively?



Thanks




enter image description here







share|cite|improve this question


















  • 3




    In wikipedia's article there are a few proofs.
    – user582578
    Aug 8 at 20:25










  • @floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
    – Michael Rozenberg
    Aug 9 at 8:49












up vote
0
down vote

favorite









up vote
0
down vote

favorite











In Arthur Engels "Problem Solving Strategies" book in the section on symmetric polynomials, he asks us to prove the identities below. I read up on expanding trinomials and got the quickest method to be a variation on Pascal's triangle. Is there a different method to prove these identities; perhaps recursively?



Thanks




enter image description here







share|cite|improve this question














In Arthur Engels "Problem Solving Strategies" book in the section on symmetric polynomials, he asks us to prove the identities below. I read up on expanding trinomials and got the quickest method to be a variation on Pascal's triangle. Is there a different method to prove these identities; perhaps recursively?



Thanks




enter image description here









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 9 at 4:22









Michael Rozenberg

88.4k1579180




88.4k1579180










asked Aug 8 at 20:21









john fowles

1,095817




1,095817







  • 3




    In wikipedia's article there are a few proofs.
    – user582578
    Aug 8 at 20:25










  • @floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
    – Michael Rozenberg
    Aug 9 at 8:49












  • 3




    In wikipedia's article there are a few proofs.
    – user582578
    Aug 8 at 20:25










  • @floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
    – Michael Rozenberg
    Aug 9 at 8:49







3




3




In wikipedia's article there are a few proofs.
– user582578
Aug 8 at 20:25




In wikipedia's article there are a few proofs.
– user582578
Aug 8 at 20:25












@floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
– Michael Rozenberg
Aug 9 at 8:49




@floodbaharak Are you sure? I think it would be better if you'll see my solution. Thank you!
– Michael Rozenberg
Aug 9 at 8:49










1 Answer
1






active

oldest

votes

















up vote
-1
down vote













$$x^2+y^2+z^2=x^2+y^2+z^2+2(xy+xz+yz)-2(xy+xz+yz)=$$
$$=(x+y+z)^2-2(xy+xz+yz)=sigma_1^2-2sigma_2;$$
$$x^3+y^3+z^3=sum_cycx^3=sum_cyc(x^3+x^2y+x^2z)-sum_cyc(x^2y+x^2z+xyz)+3xyz=$$
$$=sum_cycx^2(x+y+z)-sum_cycxy(x+y+z)+3xyz=$$
$$=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz=$$
$$=(sigma_1^2-2sigma_2)sigma_1-sigma_2sigma_1+3sigma_3=sigma_1^3-3sigma_1sigma_2+3sigma_3;$$
$$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=sum_cyc(x^2y+x^2z)=$$
$$=sum_cyc(x^2y+x^2z+xyz)-3xyz=sum_cyc(x^2y+xy^2+xyz)-3xyz=$$
$$=sum_cycxy(x+y+z)-3xyz=(x+y+z)(xy+xz+yz)-3xyz=sigma_1sigma_2-3sigma_3;$$
$$x^2y^2+x^2z^2+y^2z^2=sum_cycx^2y^2=sum_cyc(x^2y^2+2x^2yz)-2sum_cycx^2yz=$$
$$=(xy+xz+yz)^2-2xyz(x+y+z)=sigma_2^2-2sigma_1sigma_3$$ and
$$x^4+y^4+z^4=sum_cycx^4=sum_cyc(x^4+2x^2y^2)-2sum_cycx^2y^2=$$
$$=left(sum_cycx^2right)^2-2sum_cycx^2y^2=(sigma_1^2-2sigma_2)^2-2(sigma_2^2-2sigma_1sigma_3)=$$
$$=sigma_1^4-4sigma_1^2sigma_2+2sigma_2^2+4sigma_1sigma_3.$$






share|cite|improve this answer




















  • Why someone down voted?
    – Michael Rozenberg
    Aug 9 at 5:04










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876549%2fsymmetric-polynomial-identities-x-y-zn-in-terms-of-sigma-1-xyz-si%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
-1
down vote













$$x^2+y^2+z^2=x^2+y^2+z^2+2(xy+xz+yz)-2(xy+xz+yz)=$$
$$=(x+y+z)^2-2(xy+xz+yz)=sigma_1^2-2sigma_2;$$
$$x^3+y^3+z^3=sum_cycx^3=sum_cyc(x^3+x^2y+x^2z)-sum_cyc(x^2y+x^2z+xyz)+3xyz=$$
$$=sum_cycx^2(x+y+z)-sum_cycxy(x+y+z)+3xyz=$$
$$=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz=$$
$$=(sigma_1^2-2sigma_2)sigma_1-sigma_2sigma_1+3sigma_3=sigma_1^3-3sigma_1sigma_2+3sigma_3;$$
$$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=sum_cyc(x^2y+x^2z)=$$
$$=sum_cyc(x^2y+x^2z+xyz)-3xyz=sum_cyc(x^2y+xy^2+xyz)-3xyz=$$
$$=sum_cycxy(x+y+z)-3xyz=(x+y+z)(xy+xz+yz)-3xyz=sigma_1sigma_2-3sigma_3;$$
$$x^2y^2+x^2z^2+y^2z^2=sum_cycx^2y^2=sum_cyc(x^2y^2+2x^2yz)-2sum_cycx^2yz=$$
$$=(xy+xz+yz)^2-2xyz(x+y+z)=sigma_2^2-2sigma_1sigma_3$$ and
$$x^4+y^4+z^4=sum_cycx^4=sum_cyc(x^4+2x^2y^2)-2sum_cycx^2y^2=$$
$$=left(sum_cycx^2right)^2-2sum_cycx^2y^2=(sigma_1^2-2sigma_2)^2-2(sigma_2^2-2sigma_1sigma_3)=$$
$$=sigma_1^4-4sigma_1^2sigma_2+2sigma_2^2+4sigma_1sigma_3.$$






share|cite|improve this answer




















  • Why someone down voted?
    – Michael Rozenberg
    Aug 9 at 5:04














up vote
-1
down vote













$$x^2+y^2+z^2=x^2+y^2+z^2+2(xy+xz+yz)-2(xy+xz+yz)=$$
$$=(x+y+z)^2-2(xy+xz+yz)=sigma_1^2-2sigma_2;$$
$$x^3+y^3+z^3=sum_cycx^3=sum_cyc(x^3+x^2y+x^2z)-sum_cyc(x^2y+x^2z+xyz)+3xyz=$$
$$=sum_cycx^2(x+y+z)-sum_cycxy(x+y+z)+3xyz=$$
$$=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz=$$
$$=(sigma_1^2-2sigma_2)sigma_1-sigma_2sigma_1+3sigma_3=sigma_1^3-3sigma_1sigma_2+3sigma_3;$$
$$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=sum_cyc(x^2y+x^2z)=$$
$$=sum_cyc(x^2y+x^2z+xyz)-3xyz=sum_cyc(x^2y+xy^2+xyz)-3xyz=$$
$$=sum_cycxy(x+y+z)-3xyz=(x+y+z)(xy+xz+yz)-3xyz=sigma_1sigma_2-3sigma_3;$$
$$x^2y^2+x^2z^2+y^2z^2=sum_cycx^2y^2=sum_cyc(x^2y^2+2x^2yz)-2sum_cycx^2yz=$$
$$=(xy+xz+yz)^2-2xyz(x+y+z)=sigma_2^2-2sigma_1sigma_3$$ and
$$x^4+y^4+z^4=sum_cycx^4=sum_cyc(x^4+2x^2y^2)-2sum_cycx^2y^2=$$
$$=left(sum_cycx^2right)^2-2sum_cycx^2y^2=(sigma_1^2-2sigma_2)^2-2(sigma_2^2-2sigma_1sigma_3)=$$
$$=sigma_1^4-4sigma_1^2sigma_2+2sigma_2^2+4sigma_1sigma_3.$$






share|cite|improve this answer




















  • Why someone down voted?
    – Michael Rozenberg
    Aug 9 at 5:04












up vote
-1
down vote










up vote
-1
down vote









$$x^2+y^2+z^2=x^2+y^2+z^2+2(xy+xz+yz)-2(xy+xz+yz)=$$
$$=(x+y+z)^2-2(xy+xz+yz)=sigma_1^2-2sigma_2;$$
$$x^3+y^3+z^3=sum_cycx^3=sum_cyc(x^3+x^2y+x^2z)-sum_cyc(x^2y+x^2z+xyz)+3xyz=$$
$$=sum_cycx^2(x+y+z)-sum_cycxy(x+y+z)+3xyz=$$
$$=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz=$$
$$=(sigma_1^2-2sigma_2)sigma_1-sigma_2sigma_1+3sigma_3=sigma_1^3-3sigma_1sigma_2+3sigma_3;$$
$$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=sum_cyc(x^2y+x^2z)=$$
$$=sum_cyc(x^2y+x^2z+xyz)-3xyz=sum_cyc(x^2y+xy^2+xyz)-3xyz=$$
$$=sum_cycxy(x+y+z)-3xyz=(x+y+z)(xy+xz+yz)-3xyz=sigma_1sigma_2-3sigma_3;$$
$$x^2y^2+x^2z^2+y^2z^2=sum_cycx^2y^2=sum_cyc(x^2y^2+2x^2yz)-2sum_cycx^2yz=$$
$$=(xy+xz+yz)^2-2xyz(x+y+z)=sigma_2^2-2sigma_1sigma_3$$ and
$$x^4+y^4+z^4=sum_cycx^4=sum_cyc(x^4+2x^2y^2)-2sum_cycx^2y^2=$$
$$=left(sum_cycx^2right)^2-2sum_cycx^2y^2=(sigma_1^2-2sigma_2)^2-2(sigma_2^2-2sigma_1sigma_3)=$$
$$=sigma_1^4-4sigma_1^2sigma_2+2sigma_2^2+4sigma_1sigma_3.$$






share|cite|improve this answer












$$x^2+y^2+z^2=x^2+y^2+z^2+2(xy+xz+yz)-2(xy+xz+yz)=$$
$$=(x+y+z)^2-2(xy+xz+yz)=sigma_1^2-2sigma_2;$$
$$x^3+y^3+z^3=sum_cycx^3=sum_cyc(x^3+x^2y+x^2z)-sum_cyc(x^2y+x^2z+xyz)+3xyz=$$
$$=sum_cycx^2(x+y+z)-sum_cycxy(x+y+z)+3xyz=$$
$$=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz=$$
$$=(sigma_1^2-2sigma_2)sigma_1-sigma_2sigma_1+3sigma_3=sigma_1^3-3sigma_1sigma_2+3sigma_3;$$
$$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=sum_cyc(x^2y+x^2z)=$$
$$=sum_cyc(x^2y+x^2z+xyz)-3xyz=sum_cyc(x^2y+xy^2+xyz)-3xyz=$$
$$=sum_cycxy(x+y+z)-3xyz=(x+y+z)(xy+xz+yz)-3xyz=sigma_1sigma_2-3sigma_3;$$
$$x^2y^2+x^2z^2+y^2z^2=sum_cycx^2y^2=sum_cyc(x^2y^2+2x^2yz)-2sum_cycx^2yz=$$
$$=(xy+xz+yz)^2-2xyz(x+y+z)=sigma_2^2-2sigma_1sigma_3$$ and
$$x^4+y^4+z^4=sum_cycx^4=sum_cyc(x^4+2x^2y^2)-2sum_cycx^2y^2=$$
$$=left(sum_cycx^2right)^2-2sum_cycx^2y^2=(sigma_1^2-2sigma_2)^2-2(sigma_2^2-2sigma_1sigma_3)=$$
$$=sigma_1^4-4sigma_1^2sigma_2+2sigma_2^2+4sigma_1sigma_3.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Aug 9 at 4:21









Michael Rozenberg

88.4k1579180




88.4k1579180











  • Why someone down voted?
    – Michael Rozenberg
    Aug 9 at 5:04
















  • Why someone down voted?
    – Michael Rozenberg
    Aug 9 at 5:04















Why someone down voted?
– Michael Rozenberg
Aug 9 at 5:04




Why someone down voted?
– Michael Rozenberg
Aug 9 at 5:04












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876549%2fsymmetric-polynomial-identities-x-y-zn-in-terms-of-sigma-1-xyz-si%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?