Optimize distance from origin to point on superellipsoid
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I've been trying to solve this problem with a couple of methods so far (including Lagrange multipliers) but for each method I end up with an unsolvable equation.
My first approach (Lagrange multipliers) starts off with optimizing $x^2+y^2+z^2$ constrained to $left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1 = 0$ where $a$, $b$, $c$, $r$, and $t$ are variables that tweak the shape of the superellipsoid. From there, I go from this:
$$
beginbmatrix
dfracpartialpartial xleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial yleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial zleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartiallambdaleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
beginbmatrix
2x - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r\
2y - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r\
2z-dfractlambdac^tz^t-1\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t-1
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
begincases
2x - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r=0\
2y - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r=0\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t=1
endcases
$$
where I'm pretty much stuck, and sympy won't help.
My second attempt is converting the implicit equation of a superellipsoid into its polar form, then using implicit differentiation to get $dfracpartial rpartialtheta = 0$ and $dfracpartial rpartialtheta=0$. I get:
$$
left(left(dfracr sintheta cosphiaright)^n + left(dfracr sinphi sinthetabright)^nright)^fractn + left(dfracr costhetacright)^t = 1
$$
and sympy gives me:
$$
begincases
fracr left(left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) - left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right )right)left(left(fracr cosleft (theta right )cright)^t + left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (theta right ) cosleft (theta right ) = 0 \
fracr left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) - left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right )right) left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnleft(left(fracr cosleft (theta right )cright)^t left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr cosleft (theta right )cright)^t left(fracr sinleft (phi right ) sinleft (theta right )bright)^n + left(fracr sinleft (theta right ) cosleft (phi right )aright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (phi right ) cosleft (phi right ) = 0
endcases
$$
which boils down to:
$$
begincases
left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) = left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right ) \
begincases
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) = left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right ) \
or \
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n = 0
endcases
endcases
$$
at which point sympy won't help once again, and I've no idea how to solve for $theta$ and $phi$.
Anyways, has someone got an alternative method for solving this? Or is it just me who can't solve the equations?
optimization lagrange-multiplier implicit-differentiation
add a comment |Â
up vote
2
down vote
favorite
I've been trying to solve this problem with a couple of methods so far (including Lagrange multipliers) but for each method I end up with an unsolvable equation.
My first approach (Lagrange multipliers) starts off with optimizing $x^2+y^2+z^2$ constrained to $left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1 = 0$ where $a$, $b$, $c$, $r$, and $t$ are variables that tweak the shape of the superellipsoid. From there, I go from this:
$$
beginbmatrix
dfracpartialpartial xleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial yleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial zleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartiallambdaleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
beginbmatrix
2x - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r\
2y - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r\
2z-dfractlambdac^tz^t-1\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t-1
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
begincases
2x - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r=0\
2y - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r=0\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t=1
endcases
$$
where I'm pretty much stuck, and sympy won't help.
My second attempt is converting the implicit equation of a superellipsoid into its polar form, then using implicit differentiation to get $dfracpartial rpartialtheta = 0$ and $dfracpartial rpartialtheta=0$. I get:
$$
left(left(dfracr sintheta cosphiaright)^n + left(dfracr sinphi sinthetabright)^nright)^fractn + left(dfracr costhetacright)^t = 1
$$
and sympy gives me:
$$
begincases
fracr left(left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) - left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right )right)left(left(fracr cosleft (theta right )cright)^t + left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (theta right ) cosleft (theta right ) = 0 \
fracr left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) - left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right )right) left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnleft(left(fracr cosleft (theta right )cright)^t left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr cosleft (theta right )cright)^t left(fracr sinleft (phi right ) sinleft (theta right )bright)^n + left(fracr sinleft (theta right ) cosleft (phi right )aright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (phi right ) cosleft (phi right ) = 0
endcases
$$
which boils down to:
$$
begincases
left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) = left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right ) \
begincases
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) = left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right ) \
or \
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n = 0
endcases
endcases
$$
at which point sympy won't help once again, and I've no idea how to solve for $theta$ and $phi$.
Anyways, has someone got an alternative method for solving this? Or is it just me who can't solve the equations?
optimization lagrange-multiplier implicit-differentiation
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I've been trying to solve this problem with a couple of methods so far (including Lagrange multipliers) but for each method I end up with an unsolvable equation.
My first approach (Lagrange multipliers) starts off with optimizing $x^2+y^2+z^2$ constrained to $left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1 = 0$ where $a$, $b$, $c$, $r$, and $t$ are variables that tweak the shape of the superellipsoid. From there, I go from this:
$$
beginbmatrix
dfracpartialpartial xleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial yleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial zleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartiallambdaleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
beginbmatrix
2x - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r\
2y - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r\
2z-dfractlambdac^tz^t-1\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t-1
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
begincases
2x - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r=0\
2y - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r=0\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t=1
endcases
$$
where I'm pretty much stuck, and sympy won't help.
My second attempt is converting the implicit equation of a superellipsoid into its polar form, then using implicit differentiation to get $dfracpartial rpartialtheta = 0$ and $dfracpartial rpartialtheta=0$. I get:
$$
left(left(dfracr sintheta cosphiaright)^n + left(dfracr sinphi sinthetabright)^nright)^fractn + left(dfracr costhetacright)^t = 1
$$
and sympy gives me:
$$
begincases
fracr left(left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) - left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right )right)left(left(fracr cosleft (theta right )cright)^t + left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (theta right ) cosleft (theta right ) = 0 \
fracr left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) - left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right )right) left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnleft(left(fracr cosleft (theta right )cright)^t left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr cosleft (theta right )cright)^t left(fracr sinleft (phi right ) sinleft (theta right )bright)^n + left(fracr sinleft (theta right ) cosleft (phi right )aright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (phi right ) cosleft (phi right ) = 0
endcases
$$
which boils down to:
$$
begincases
left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) = left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right ) \
begincases
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) = left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right ) \
or \
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n = 0
endcases
endcases
$$
at which point sympy won't help once again, and I've no idea how to solve for $theta$ and $phi$.
Anyways, has someone got an alternative method for solving this? Or is it just me who can't solve the equations?
optimization lagrange-multiplier implicit-differentiation
I've been trying to solve this problem with a couple of methods so far (including Lagrange multipliers) but for each method I end up with an unsolvable equation.
My first approach (Lagrange multipliers) starts off with optimizing $x^2+y^2+z^2$ constrained to $left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1 = 0$ where $a$, $b$, $c$, $r$, and $t$ are variables that tweak the shape of the superellipsoid. From there, I go from this:
$$
beginbmatrix
dfracpartialpartial xleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial yleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartial zleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)\
dfracpartialpartiallambdaleft(x^2 + y^2 + z^2 - lambdaleft(left(left|dfracxaright|^r+left|dfracybright|^rright)^fractr+left|dfraczcright|^t-1right)right)
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
beginbmatrix
2x - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r\
2y - dfractrlambdaleft(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r\
2z-dfractlambdac^tz^t-1\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t-1
endbmatrix
=
beginbmatrix
0\0\0\0
endbmatrix
$$
to
$$
begincases
2x - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracx^r-1a^r=0\
2y - dfractr2z^2-tc^tt^-1left(left(dfracxaright)^r+left(dfracybright)^rright)^dfract-rrdfracy^r-1b^r=0\
left(left(dfracxaright)^r+left(dfracybright)^rright)^fractr+left(dfraczcright)^t=1
endcases
$$
where I'm pretty much stuck, and sympy won't help.
My second attempt is converting the implicit equation of a superellipsoid into its polar form, then using implicit differentiation to get $dfracpartial rpartialtheta = 0$ and $dfracpartial rpartialtheta=0$. I get:
$$
left(left(dfracr sintheta cosphiaright)^n + left(dfracr sinphi sinthetabright)^nright)^fractn + left(dfracr costhetacright)^t = 1
$$
and sympy gives me:
$$
begincases
fracr left(left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) - left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right )right)left(left(fracr cosleft (theta right )cright)^t + left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (theta right ) cosleft (theta right ) = 0 \
fracr left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) - left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right )right) left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnleft(left(fracr cosleft (theta right )cright)^t left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr cosleft (theta right )cright)^t left(fracr sinleft (phi right ) sinleft (theta right )bright)^n + left(fracr sinleft (theta right ) cosleft (phi right )aright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractnright) sinleft (phi right ) cosleft (phi right ) = 0
endcases
$$
which boils down to:
$$
begincases
left(fracr cosleft (theta right )cright)^t sin^2left (theta right ) = left(left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^nright)^fractn cos^2left (theta right ) \
begincases
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n sin^2left (phi right ) = left(fracr sinleft (phi right ) sinleft (theta right )bright)^n cos^2left (phi right ) \
or \
left(fracr sinleft (theta right ) cosleft (phi right )aright)^n + left(fracr sinleft (phi right ) sinleft (theta right )bright)^n = 0
endcases
endcases
$$
at which point sympy won't help once again, and I've no idea how to solve for $theta$ and $phi$.
Anyways, has someone got an alternative method for solving this? Or is it just me who can't solve the equations?
optimization lagrange-multiplier implicit-differentiation
asked Aug 8 at 20:11
Toby Mueller
112
112
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00
add a comment |Â
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Use the change of variable
$$left(frac xaright)^r=rho^r/tcos^2theta,
\left(frac ybright)^r=rho^r/tsin^2theta.$$
Then the constraint becomes
$$rho+left(frac zcright)^t-1=0$$ or
$$z=c(1-rho)^1/t.$$
The function to be maximized is now
$$rho^2/t(a^2cos^4/rtheta+b^2sin^4/rtheta)+c^2(1-rho)^2/t.$$
Differentiating on $theta$ and canceling,
$$-a^2sinthetacos^4/r-1theta+b^2costhetasin^4/r-1theta=0$$ or
$$tan^4/r-2theta=fraca^2b^2$$ gives you the solutions in $theta$.
And differentiating on $rho$,
$$rho^2/t-1(a^2cos^4/rtheta+b^2sin^4/rtheta)-c^2(1-rho)^2/t-1$$
gives
$$frac1-rhorho=left(fraca^2cos^4/rtheta+b^2sin^4/rthetac^2right)^t/(2-t).$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Use the change of variable
$$left(frac xaright)^r=rho^r/tcos^2theta,
\left(frac ybright)^r=rho^r/tsin^2theta.$$
Then the constraint becomes
$$rho+left(frac zcright)^t-1=0$$ or
$$z=c(1-rho)^1/t.$$
The function to be maximized is now
$$rho^2/t(a^2cos^4/rtheta+b^2sin^4/rtheta)+c^2(1-rho)^2/t.$$
Differentiating on $theta$ and canceling,
$$-a^2sinthetacos^4/r-1theta+b^2costhetasin^4/r-1theta=0$$ or
$$tan^4/r-2theta=fraca^2b^2$$ gives you the solutions in $theta$.
And differentiating on $rho$,
$$rho^2/t-1(a^2cos^4/rtheta+b^2sin^4/rtheta)-c^2(1-rho)^2/t-1$$
gives
$$frac1-rhorho=left(fraca^2cos^4/rtheta+b^2sin^4/rthetac^2right)^t/(2-t).$$
add a comment |Â
up vote
1
down vote
Use the change of variable
$$left(frac xaright)^r=rho^r/tcos^2theta,
\left(frac ybright)^r=rho^r/tsin^2theta.$$
Then the constraint becomes
$$rho+left(frac zcright)^t-1=0$$ or
$$z=c(1-rho)^1/t.$$
The function to be maximized is now
$$rho^2/t(a^2cos^4/rtheta+b^2sin^4/rtheta)+c^2(1-rho)^2/t.$$
Differentiating on $theta$ and canceling,
$$-a^2sinthetacos^4/r-1theta+b^2costhetasin^4/r-1theta=0$$ or
$$tan^4/r-2theta=fraca^2b^2$$ gives you the solutions in $theta$.
And differentiating on $rho$,
$$rho^2/t-1(a^2cos^4/rtheta+b^2sin^4/rtheta)-c^2(1-rho)^2/t-1$$
gives
$$frac1-rhorho=left(fraca^2cos^4/rtheta+b^2sin^4/rthetac^2right)^t/(2-t).$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Use the change of variable
$$left(frac xaright)^r=rho^r/tcos^2theta,
\left(frac ybright)^r=rho^r/tsin^2theta.$$
Then the constraint becomes
$$rho+left(frac zcright)^t-1=0$$ or
$$z=c(1-rho)^1/t.$$
The function to be maximized is now
$$rho^2/t(a^2cos^4/rtheta+b^2sin^4/rtheta)+c^2(1-rho)^2/t.$$
Differentiating on $theta$ and canceling,
$$-a^2sinthetacos^4/r-1theta+b^2costhetasin^4/r-1theta=0$$ or
$$tan^4/r-2theta=fraca^2b^2$$ gives you the solutions in $theta$.
And differentiating on $rho$,
$$rho^2/t-1(a^2cos^4/rtheta+b^2sin^4/rtheta)-c^2(1-rho)^2/t-1$$
gives
$$frac1-rhorho=left(fraca^2cos^4/rtheta+b^2sin^4/rthetac^2right)^t/(2-t).$$
Use the change of variable
$$left(frac xaright)^r=rho^r/tcos^2theta,
\left(frac ybright)^r=rho^r/tsin^2theta.$$
Then the constraint becomes
$$rho+left(frac zcright)^t-1=0$$ or
$$z=c(1-rho)^1/t.$$
The function to be maximized is now
$$rho^2/t(a^2cos^4/rtheta+b^2sin^4/rtheta)+c^2(1-rho)^2/t.$$
Differentiating on $theta$ and canceling,
$$-a^2sinthetacos^4/r-1theta+b^2costhetasin^4/r-1theta=0$$ or
$$tan^4/r-2theta=fraca^2b^2$$ gives you the solutions in $theta$.
And differentiating on $rho$,
$$rho^2/t-1(a^2cos^4/rtheta+b^2sin^4/rtheta)-c^2(1-rho)^2/t-1$$
gives
$$frac1-rhorho=left(fraca^2cos^4/rtheta+b^2sin^4/rthetac^2right)^t/(2-t).$$
edited Aug 8 at 21:26
answered Aug 8 at 21:03
Yves Daoust
112k665205
112k665205
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876537%2foptimize-distance-from-origin-to-point-on-superellipsoid%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I am pretty sure it is not just you that can't solve the equations :-)
â Rolazaro Azeveires
Aug 8 at 20:19
This is not a superellipsoid, is it ?
â Yves Daoust
Aug 8 at 20:32
You have the obvious solutions $x=y=0,z=pm c$, don't you ?
â Yves Daoust
Aug 8 at 20:36
The original superellipse(oid) was the simpler $$left|fracxaright|^t +left|fracybright|^t +left|fraczcright|^t = 1 $$ I remember they did discuss revolving a superellipse around one axis to get a solid. Maybe that is what you are generalizing with your letter $r$
â Will Jagy
Aug 8 at 21:00