Show that four points given by vectors lay on a circle
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:
Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.
I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.
Any suggestions for another strategy, am I just messing something along the way?
geometry vector-spaces vectors vector-analysis circle
add a comment |Â
up vote
0
down vote
favorite
I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:
Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.
I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.
Any suggestions for another strategy, am I just messing something along the way?
geometry vector-spaces vectors vector-analysis circle
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:
Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.
I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.
Any suggestions for another strategy, am I just messing something along the way?
geometry vector-spaces vectors vector-analysis circle
I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:
Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.
I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.
Any suggestions for another strategy, am I just messing something along the way?
geometry vector-spaces vectors vector-analysis circle
edited Aug 9 at 3:23
Michael Rozenberg
88.4k1579180
88.4k1579180
asked Aug 8 at 18:35
fazan
164
164
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
0
down vote
accepted
The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$
Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
add a comment |Â
up vote
1
down vote
Hint: Â $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.
add a comment |Â
up vote
0
down vote
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then
$$OAcdot OA'=r_1cdot r_2$$
$$OBcdot OB'=r_1cdot r_2$$
therefore by Circle Power the four points belong the a circle.
add a comment |Â
up vote
0
down vote
WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
$$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
Refer to the graph:
$hspace6cm$
Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.
If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$
Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
add a comment |Â
up vote
0
down vote
accepted
The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$
Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$
Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.
The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$
Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.
answered Aug 8 at 18:41
Michael Rozenberg
88.4k1579180
88.4k1579180
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
add a comment |Â
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
I don't really catch why BBâ²||AAâ² ?
â fazan
Aug 8 at 18:46
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
@fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
â Michael Rozenberg
Aug 8 at 18:47
add a comment |Â
up vote
1
down vote
Hint: Â $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.
add a comment |Â
up vote
1
down vote
Hint: Â $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: Â $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.
Hint: Â $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.
answered Aug 8 at 18:50
dxiv
54.6k64798
54.6k64798
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then
$$OAcdot OA'=r_1cdot r_2$$
$$OBcdot OB'=r_1cdot r_2$$
therefore by Circle Power the four points belong the a circle.
add a comment |Â
up vote
0
down vote
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then
$$OAcdot OA'=r_1cdot r_2$$
$$OBcdot OB'=r_1cdot r_2$$
therefore by Circle Power the four points belong the a circle.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then
$$OAcdot OA'=r_1cdot r_2$$
$$OBcdot OB'=r_1cdot r_2$$
therefore by Circle Power the four points belong the a circle.
Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then
$$OAcdot OA'=r_1cdot r_2$$
$$OBcdot OB'=r_1cdot r_2$$
therefore by Circle Power the four points belong the a circle.
edited Aug 9 at 6:03
answered Aug 8 at 18:48
gimusi
65.8k73684
65.8k73684
add a comment |Â
add a comment |Â
up vote
0
down vote
WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
$$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
Refer to the graph:
$hspace6cm$
Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.
If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.
add a comment |Â
up vote
0
down vote
WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
$$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
Refer to the graph:
$hspace6cm$
Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.
If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
$$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
Refer to the graph:
$hspace6cm$
Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.
If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.
WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
$$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
Refer to the graph:
$hspace6cm$
Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.
If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.
answered Aug 9 at 6:06
farruhota
13.8k2632
13.8k2632
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876422%2fshow-that-four-points-given-by-vectors-lay-on-a-circle%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password