Show that four points given by vectors lay on a circle

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:




Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.




I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.



Any suggestions for another strategy, am I just messing something along the way?







share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:




    Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.




    I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.



    Any suggestions for another strategy, am I just messing something along the way?







    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:




      Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.




      I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.



      Any suggestions for another strategy, am I just messing something along the way?







      share|cite|improve this question














      I'm stuck on problem 2.10 from Vector Analysis and Cartesian Tensors by Kendall:




      Show that the four points with position vectors $vecr_1$, $vecr_2$, $fracr_2r_1vecr_1$, $fracr_1r_2vecr_2$ , where $r_1neq0$ and $r_2neq0$, lie on a circle.




      I tried supposing that there exists some vector $vecd$ which gives the position of the circle centre and then trying to prove that the distance from each point to this centre is equal. But I just arrive at the condition that $hatr_1=hatr_2$.



      Any suggestions for another strategy, am I just messing something along the way?









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 9 at 3:23









      Michael Rozenberg

      88.4k1579180




      88.4k1579180










      asked Aug 8 at 18:35









      fazan

      164




      164




















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.



          Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$



          Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.






          share|cite|improve this answer




















          • I don't really catch why BB′||AA′ ?
            – fazan
            Aug 8 at 18:46










          • @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
            – Michael Rozenberg
            Aug 8 at 18:47

















          up vote
          1
          down vote













          Hint:   $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.






          share|cite|improve this answer



























            up vote
            0
            down vote













            Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then



            $$OAcdot OA'=r_1cdot r_2$$



            $$OBcdot OB'=r_1cdot r_2$$



            therefore by Circle Power the four points belong the a circle.






            share|cite|improve this answer





























              up vote
              0
              down vote













              WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
              $$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
              left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
              fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
              left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
              Refer to the graph:



              $hspace6cm$enter image description here



              Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.



              If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.






              share|cite|improve this answer




















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );








                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876422%2fshow-that-four-points-given-by-vectors-lay-on-a-circle%23new-answer', 'question_page');

                );

                Post as a guest






























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                0
                down vote



                accepted










                The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.



                Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$



                Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.






                share|cite|improve this answer




















                • I don't really catch why BB′||AA′ ?
                  – fazan
                  Aug 8 at 18:46










                • @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                  – Michael Rozenberg
                  Aug 8 at 18:47














                up vote
                0
                down vote



                accepted










                The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.



                Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$



                Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.






                share|cite|improve this answer




















                • I don't really catch why BB′||AA′ ?
                  – fazan
                  Aug 8 at 18:46










                • @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                  – Michael Rozenberg
                  Aug 8 at 18:47












                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.



                Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$



                Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.






                share|cite|improve this answer












                The cases $vecr_1||vecr_2$ and $|vecr_1|=|vecr_2|$ they are obvious.



                Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOB'=fracr_2r_1vecr_1$ and $vecOA'=fracr_1r_2vecr_2.$



                Thus, $BB'||AA'$, $AB'=BA'$, which says that the trapezoid $AB'BA'$ is cyclic.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 8 at 18:41









                Michael Rozenberg

                88.4k1579180




                88.4k1579180











                • I don't really catch why BB′||AA′ ?
                  – fazan
                  Aug 8 at 18:46










                • @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                  – Michael Rozenberg
                  Aug 8 at 18:47
















                • I don't really catch why BB′||AA′ ?
                  – fazan
                  Aug 8 at 18:46










                • @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                  – Michael Rozenberg
                  Aug 8 at 18:47















                I don't really catch why BB′||AA′ ?
                – fazan
                Aug 8 at 18:46




                I don't really catch why BB′||AA′ ?
                – fazan
                Aug 8 at 18:46












                @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                – Michael Rozenberg
                Aug 8 at 18:47




                @fazan Because $OB'=OB$ and $OA=OA'$. Draw it!
                – Michael Rozenberg
                Aug 8 at 18:47










                up vote
                1
                down vote













                Hint:   $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.






                share|cite|improve this answer
























                  up vote
                  1
                  down vote













                  Hint:   $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.






                  share|cite|improve this answer






















                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Hint:   $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.






                    share|cite|improve this answer












                    Hint:   $|vec r_1| = r_1 = left|fracr_1r_2 vec r_2,right|$ and $|vec r_2| = r_2 = left|fracr_2r_1 vec r_1,right|$, so the four points define an isosceles trapezoid.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Aug 8 at 18:50









                    dxiv

                    54.6k64798




                    54.6k64798




















                        up vote
                        0
                        down vote













                        Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then



                        $$OAcdot OA'=r_1cdot r_2$$



                        $$OBcdot OB'=r_1cdot r_2$$



                        therefore by Circle Power the four points belong the a circle.






                        share|cite|improve this answer


























                          up vote
                          0
                          down vote













                          Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then



                          $$OAcdot OA'=r_1cdot r_2$$



                          $$OBcdot OB'=r_1cdot r_2$$



                          therefore by Circle Power the four points belong the a circle.






                          share|cite|improve this answer
























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then



                            $$OAcdot OA'=r_1cdot r_2$$



                            $$OBcdot OB'=r_1cdot r_2$$



                            therefore by Circle Power the four points belong the a circle.






                            share|cite|improve this answer














                            Let $vecOA=vecr_1,$ $vecOB=vecr_2,$ $vecOA'=fracr_2r_1vecr_1$ and $vecOB'=fracr_1r_2vecr_2$ then



                            $$OAcdot OA'=r_1cdot r_2$$



                            $$OBcdot OB'=r_1cdot r_2$$



                            therefore by Circle Power the four points belong the a circle.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Aug 9 at 6:03

























                            answered Aug 8 at 18:48









                            gimusi

                            65.8k73684




                            65.8k73684




















                                up vote
                                0
                                down vote













                                WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
                                $$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
                                left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
                                fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
                                left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
                                Refer to the graph:



                                $hspace6cm$enter image description here



                                Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.



                                If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.






                                share|cite|improve this answer
























                                  up vote
                                  0
                                  down vote













                                  WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
                                  $$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
                                  left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
                                  fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
                                  left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
                                  Refer to the graph:



                                  $hspace6cm$enter image description here



                                  Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.



                                  If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.






                                  share|cite|improve this answer






















                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
                                    $$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
                                    left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
                                    fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
                                    left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
                                    Refer to the graph:



                                    $hspace6cm$enter image description here



                                    Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.



                                    If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.






                                    share|cite|improve this answer












                                    WLOG, consider $2$-D. Let $vecr_1(x_1,y_1)=vecOA,vecr_2(x_2,y_2)=vecOB$. Then:
                                    $$fracr_2r_1vecr_1=vecOB'left(x_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2,y_1sqrtfracx_2^2+y_2^2x_1^2+y_1^2right),\
                                    left|vecOB'right|=sqrtx_2^2+y_2^2=|vecr_2|=vecOB\
                                    fracr_1r_2vecr_2=vecOA'left(x_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2,y_2sqrtfracx_1^2+y_1^2x_2^2+y_2^2right),\
                                    left|vecOA'right|=sqrtx_1^2+y_1^2=|vecr_1|=|vecOA|.$$
                                    Refer to the graph:



                                    $hspace6cm$enter image description here



                                    Note that $AA'||BB'$, therefore $AA'BB'$ is an isosceles trapezoid, hence cyclic.



                                    If $vecr_1$ and $vecr_2$ are collinear and directed in the same direction, the four points are still cyclic, however, if they are oppositely directed (except being equal), then the four points are cocentric.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Aug 9 at 6:06









                                    farruhota

                                    13.8k2632




                                    13.8k2632






















                                         

                                        draft saved


                                        draft discarded


























                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2876422%2fshow-that-four-points-given-by-vectors-lay-on-a-circle%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        這個網誌中的熱門文章

                                        How to combine Bézier curves to a surface?

                                        Mutual Information Always Non-negative

                                        Why am i infinitely getting the same tweet with the Twitter Search API?