Finding certain Mobius tranformation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that



(1) $f(D) = z = x+iy : $



$textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$



(2) $f(D) = > r$



$textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$



(3) $f(D) = z = x+iy : x > B$



$textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$



Is it correct ?







share|cite|improve this question
























    up vote
    1
    down vote

    favorite












    Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that



    (1) $f(D) = z = x+iy : $



    $textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$



    (2) $f(D) = > r$



    $textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$



    (3) $f(D) = z = x+iy : x > B$



    $textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$



    Is it correct ?







    share|cite|improve this question






















      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that



      (1) $f(D) = z = x+iy : $



      $textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$



      (2) $f(D) = > r$



      $textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$



      (3) $f(D) = z = x+iy : x > B$



      $textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$



      Is it correct ?







      share|cite|improve this question












      Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that



      (1) $f(D) = z = x+iy : $



      $textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$



      (2) $f(D) = > r$



      $textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$



      (3) $f(D) = z = x+iy : x > B$



      $textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$



      Is it correct ?









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jun 4 at 19:52









      user117375

      305212




      305212




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          $z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.



          $z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.



          The third mapping is correct, $g$ maps the unit disk to the upper half-plane.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2808087%2ffinding-certain-mobius-tranformation%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            $z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.



            $z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.



            The third mapping is correct, $g$ maps the unit disk to the upper half-plane.






            share|cite|improve this answer
























              up vote
              1
              down vote













              $z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.



              $z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.



              The third mapping is correct, $g$ maps the unit disk to the upper half-plane.






              share|cite|improve this answer






















                up vote
                1
                down vote










                up vote
                1
                down vote









                $z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.



                $z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.



                The third mapping is correct, $g$ maps the unit disk to the upper half-plane.






                share|cite|improve this answer












                $z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.



                $z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.



                The third mapping is correct, $g$ maps the unit disk to the upper half-plane.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 8 at 18:59









                Maxim

                2,165113




                2,165113






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2808087%2ffinding-certain-mobius-tranformation%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?