Finding certain Mobius tranformation
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that
(1) $f(D) = z = x+iy : $
$textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$
(2) $f(D) = > r$
$textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$
(3) $f(D) = z = x+iy : x > B$
$textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$
Is it correct ?
complex-analysis holomorphic-functions mobius-transformation
add a comment |Â
up vote
1
down vote
favorite
Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that
(1) $f(D) = z = x+iy : $
$textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$
(2) $f(D) = > r$
$textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$
(3) $f(D) = z = x+iy : x > B$
$textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$
Is it correct ?
complex-analysis holomorphic-functions mobius-transformation
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that
(1) $f(D) = z = x+iy : $
$textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$
(2) $f(D) = > r$
$textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$
(3) $f(D) = z = x+iy : x > B$
$textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$
Is it correct ?
complex-analysis holomorphic-functions mobius-transformation
Let $D$ denote the unit disc (|z| < 1). Let $a in mathbbC, B in mathbbR$ and $r > 0.$ I want to find a Mobius map $f$ such that
(1) $f(D) = z = x+iy : $
$textbfSol$ Let $g(z) = rz$ and $h(z) = z-a$. Then $f = h circ g.$
(2) $f(D) = > r$
$textbfSol$ Let $g(z) = rz$, $h(z) = z-a$ and $k(z) = z^-1.$ Then $f = k circ h circ g.$
(3) $f(D) = z = x+iy : x > B$
$textbfSol$ Let $g(z) = ifrac1-z1+z, h(z) = e^i(-pi/2)z$ and $k(z) = z+B.$ Then $f = k circ h circ g.$
Is it correct ?
complex-analysis holomorphic-functions mobius-transformation
asked Jun 4 at 19:52
user117375
305212
305212
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
$z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.
$z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.
The third mapping is correct, $g$ maps the unit disk to the upper half-plane.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
$z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.
$z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.
The third mapping is correct, $g$ maps the unit disk to the upper half-plane.
add a comment |Â
up vote
1
down vote
$z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.
$z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.
The third mapping is correct, $g$ maps the unit disk to the upper half-plane.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.
$z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.
The third mapping is correct, $g$ maps the unit disk to the upper half-plane.
$z mapsto r z$ scales the unit disk by the factor $r$, then $z mapsto z - a$ translates the disk so that the center moves to $-a$. You want $(z mapsto z + a) circ (z mapsto r z)$ instead.
$z mapsto 1/z$ performs the combination of plane inversion with conjugation. The center and the radius of the disk will change if $z mapsto 1/z$ is applied as the third step. You want $z mapsto r/z + a$.
The third mapping is correct, $g$ maps the unit disk to the upper half-plane.
answered Aug 8 at 18:59
Maxim
2,165113
2,165113
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2808087%2ffinding-certain-mobius-tranformation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password