Solve: $int x^3sqrt4-x^2dx$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
$$int x^3sqrt4-x^2dx$$
I tried changing the expression like this:
$$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.
calculus integration
add a comment |Â
up vote
2
down vote
favorite
$$int x^3sqrt4-x^2dx$$
I tried changing the expression like this:
$$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.
calculus integration
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
$$int x^3sqrt4-x^2dx$$
I tried changing the expression like this:
$$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.
calculus integration
$$int x^3sqrt4-x^2dx$$
I tried changing the expression like this:
$$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.
calculus integration
asked Apr 5 '16 at 16:49
PanthersFan92
644416
644416
add a comment |Â
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
1
down vote
accepted
Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$
Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
beginalign
int x^2 sqrt4-x^2 , cdot x , dx
&= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
&= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
&= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
&= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
endalign
add a comment |Â
up vote
2
down vote
We can write the integral as follows
beginalign*
int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
&=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
&=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
endalign*
add a comment |Â
up vote
1
down vote
$$int x^3sqrt4-x^2spacetextdx=$$
Substitute $u=x^2$ and $textdu=2xspacetextdx$:
$$frac12int usqrt4-uspacetextdu=$$
Substitute $s=4-u$ and $textds=-spacetextdu$:
$$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
$$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$
Use:
$$int y^bspacetextdy=fracy^b+1b+1+textC$$
$$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
$$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
add a comment |Â
up vote
1
down vote
The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$
add a comment |Â
up vote
0
down vote
Substituting $x=2sin t$, we get:
$$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
$$=32int (cos^2 t-cos ^4 t)sin tdt$$
$$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$
Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
beginalign
int x^2 sqrt4-x^2 , cdot x , dx
&= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
&= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
&= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
&= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
endalign
add a comment |Â
up vote
1
down vote
accepted
Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$
Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
beginalign
int x^2 sqrt4-x^2 , cdot x , dx
&= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
&= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
&= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
&= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
endalign
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$
Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
beginalign
int x^2 sqrt4-x^2 , cdot x , dx
&= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
&= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
&= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
&= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
endalign
Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$
Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
beginalign
int x^2 sqrt4-x^2 , cdot x , dx
&= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
&= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
&= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
&= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
endalign
answered Apr 5 '16 at 17:30
tilper
12.8k11045
12.8k11045
add a comment |Â
add a comment |Â
up vote
2
down vote
We can write the integral as follows
beginalign*
int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
&=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
&=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
endalign*
add a comment |Â
up vote
2
down vote
We can write the integral as follows
beginalign*
int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
&=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
&=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
endalign*
add a comment |Â
up vote
2
down vote
up vote
2
down vote
We can write the integral as follows
beginalign*
int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
&=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
&=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
endalign*
We can write the integral as follows
beginalign*
int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
&=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
&=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
&=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
endalign*
answered Apr 5 '16 at 17:03
Ãngel Mario Gallegos
18.2k11230
18.2k11230
add a comment |Â
add a comment |Â
up vote
1
down vote
$$int x^3sqrt4-x^2spacetextdx=$$
Substitute $u=x^2$ and $textdu=2xspacetextdx$:
$$frac12int usqrt4-uspacetextdu=$$
Substitute $s=4-u$ and $textds=-spacetextdu$:
$$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
$$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$
Use:
$$int y^bspacetextdy=fracy^b+1b+1+textC$$
$$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
$$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
add a comment |Â
up vote
1
down vote
$$int x^3sqrt4-x^2spacetextdx=$$
Substitute $u=x^2$ and $textdu=2xspacetextdx$:
$$frac12int usqrt4-uspacetextdu=$$
Substitute $s=4-u$ and $textds=-spacetextdu$:
$$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
$$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$
Use:
$$int y^bspacetextdy=fracy^b+1b+1+textC$$
$$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
$$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$int x^3sqrt4-x^2spacetextdx=$$
Substitute $u=x^2$ and $textdu=2xspacetextdx$:
$$frac12int usqrt4-uspacetextdu=$$
Substitute $s=4-u$ and $textds=-spacetextdu$:
$$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
$$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$
Use:
$$int y^bspacetextdy=fracy^b+1b+1+textC$$
$$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
$$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$
$$int x^3sqrt4-x^2spacetextdx=$$
Substitute $u=x^2$ and $textdu=2xspacetextdx$:
$$frac12int usqrt4-uspacetextdu=$$
Substitute $s=4-u$ and $textds=-spacetextdu$:
$$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
$$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$
Use:
$$int y^bspacetextdy=fracy^b+1b+1+textC$$
$$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
$$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$
edited Apr 5 '16 at 17:00
answered Apr 5 '16 at 16:53
Jan
21.6k31239
21.6k31239
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
add a comment |Â
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
You missed $u$ in the second integral.
â Galc127
Apr 5 '16 at 17:00
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
@Galc127 You're right, I've edited it! Thanks for your comment
â Jan
Apr 5 '16 at 17:01
add a comment |Â
up vote
1
down vote
The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$
add a comment |Â
up vote
1
down vote
The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$
The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$
answered Apr 5 '16 at 17:31
heropup
60k65895
60k65895
add a comment |Â
add a comment |Â
up vote
0
down vote
Substituting $x=2sin t$, we get:
$$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
$$=32int (cos^2 t-cos ^4 t)sin tdt$$
$$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$
add a comment |Â
up vote
0
down vote
Substituting $x=2sin t$, we get:
$$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
$$=32int (cos^2 t-cos ^4 t)sin tdt$$
$$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Substituting $x=2sin t$, we get:
$$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
$$=32int (cos^2 t-cos ^4 t)sin tdt$$
$$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$
Substituting $x=2sin t$, we get:
$$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
$$=32int (cos^2 t-cos ^4 t)sin tdt$$
$$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$
edited Apr 5 '16 at 17:20
answered Apr 5 '16 at 17:11
Nikunj
4,46111133
4,46111133
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1729189%2fsolve-int-x3-sqrt4-x2dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password