Solve: $int x^3sqrt4-x^2dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












$$int x^3sqrt4-x^2dx$$
I tried changing the expression like this:
$$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.







share|cite|improve this question
























    up vote
    2
    down vote

    favorite
    1












    $$int x^3sqrt4-x^2dx$$
    I tried changing the expression like this:
    $$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
    And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.







    share|cite|improve this question






















      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1





      $$int x^3sqrt4-x^2dx$$
      I tried changing the expression like this:
      $$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
      And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.







      share|cite|improve this question












      $$int x^3sqrt4-x^2dx$$
      I tried changing the expression like this:
      $$int x^3sqrt2^2-x^2dx=int x^3sqrt(2-x)(2+x)dx$$
      And that's where I got stuck. I tried integration by parts but it doesn't simplify the expression.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 5 '16 at 16:49









      PanthersFan92

      644416




      644416




















          5 Answers
          5






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$



          Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
          beginalign
          int x^2 sqrt4-x^2 , cdot x , dx
          &= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
          &= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
          &= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
          &= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
          endalign






          share|cite|improve this answer



























            up vote
            2
            down vote













            We can write the integral as follows
            beginalign*
            int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
            &=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
            &=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
            &=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
            &=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
            endalign*






            share|cite|improve this answer



























              up vote
              1
              down vote













              $$int x^3sqrt4-x^2spacetextdx=$$




              Substitute $u=x^2$ and $textdu=2xspacetextdx$:




              $$frac12int usqrt4-uspacetextdu=$$




              Substitute $s=4-u$ and $textds=-spacetextdu$:




              $$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
              $$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$




              Use:



              $$int y^bspacetextdy=fracy^b+1b+1+textC$$




              $$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
              $$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$






              share|cite|improve this answer






















              • You missed $u$ in the second integral.
                – Galc127
                Apr 5 '16 at 17:00










              • @Galc127 You're right, I've edited it! Thanks for your comment
                – Jan
                Apr 5 '16 at 17:01

















              up vote
              1
              down vote













              The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$






              share|cite|improve this answer



























                up vote
                0
                down vote













                Substituting $x=2sin t$, we get:
                $$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
                $$=32int (cos^2 t-cos ^4 t)sin tdt$$
                $$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$






                share|cite|improve this answer






















                  Your Answer




                  StackExchange.ifUsing("editor", function ()
                  return StackExchange.using("mathjaxEditing", function ()
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  );
                  );
                  , "mathjax-editing");

                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  convertImagesToLinks: true,
                  noModals: false,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );








                   

                  draft saved


                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1729189%2fsolve-int-x3-sqrt4-x2dx%23new-answer', 'question_page');

                  );

                  Post as a guest






























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes








                  up vote
                  1
                  down vote



                  accepted










                  Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$



                  Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
                  beginalign
                  int x^2 sqrt4-x^2 , cdot x , dx
                  &= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
                  &= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
                  &= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
                  &= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
                  endalign






                  share|cite|improve this answer
























                    up vote
                    1
                    down vote



                    accepted










                    Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$



                    Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
                    beginalign
                    int x^2 sqrt4-x^2 , cdot x , dx
                    &= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
                    &= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
                    &= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
                    &= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
                    endalign






                    share|cite|improve this answer






















                      up vote
                      1
                      down vote



                      accepted







                      up vote
                      1
                      down vote



                      accepted






                      Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$



                      Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
                      beginalign
                      int x^2 sqrt4-x^2 , cdot x , dx
                      &= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
                      &= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
                      &= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
                      &= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
                      endalign






                      share|cite|improve this answer












                      Here's yet another way. First write: $$int x^3sqrt4-x^2 , dx = int x^2 sqrt4-x^2 , cdot x , dx$$



                      Now let $u = 4-x^2$, so then $du = -2x, dx$ (meaning $x,dx = -frac12du$), and $x^2 = 4 - u$. Then you get:
                      beginalign
                      int x^2 sqrt4-x^2 , cdot x , dx
                      &= int (4-u)sqrtu , cdot left(-frac12right) , du\[0.3cm]
                      &= -frac12 int (4u^1/2 - u^3/2) , du\[0.3cm]
                      &= -frac12left(4 cdot frac23 u^3/2 - frac25u^5/2right) + C\[0.3cm]
                      &= frac15(4-x^2)^5/2 - frac43(4-x^2)^3/2 + C
                      endalign







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Apr 5 '16 at 17:30









                      tilper

                      12.8k11045




                      12.8k11045




















                          up vote
                          2
                          down vote













                          We can write the integral as follows
                          beginalign*
                          int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
                          &=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                          &=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                          &=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
                          &=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
                          endalign*






                          share|cite|improve this answer
























                            up vote
                            2
                            down vote













                            We can write the integral as follows
                            beginalign*
                            int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
                            &=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                            &=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                            &=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
                            &=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
                            endalign*






                            share|cite|improve this answer






















                              up vote
                              2
                              down vote










                              up vote
                              2
                              down vote









                              We can write the integral as follows
                              beginalign*
                              int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
                              &=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                              &=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                              &=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
                              &=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
                              endalign*






                              share|cite|improve this answer












                              We can write the integral as follows
                              beginalign*
                              int x^3sqrt4-x^2dx&=int x(x^2-4)sqrt4-x^2dx+int 4xsqrt4-x^2dx\
                              &=int(4-x^2)sqrt4-x^2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                              &=int(4-x^2)^3/2(-xdx)-2int (4-x^2)^1/2(-2xdx)\
                              &=frac12frac(4-x^2)^5/25/2-2frac(4-x^2)^3/23/2+C\
                              &=frac15(4-x^2)^5/2-frac43(4-x^2)^3/2+C
                              endalign*







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Apr 5 '16 at 17:03









                              Ángel Mario Gallegos

                              18.2k11230




                              18.2k11230




















                                  up vote
                                  1
                                  down vote













                                  $$int x^3sqrt4-x^2spacetextdx=$$




                                  Substitute $u=x^2$ and $textdu=2xspacetextdx$:




                                  $$frac12int usqrt4-uspacetextdu=$$




                                  Substitute $s=4-u$ and $textds=-spacetextdu$:




                                  $$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
                                  $$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$




                                  Use:



                                  $$int y^bspacetextdy=fracy^b+1b+1+textC$$




                                  $$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
                                  $$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$






                                  share|cite|improve this answer






















                                  • You missed $u$ in the second integral.
                                    – Galc127
                                    Apr 5 '16 at 17:00










                                  • @Galc127 You're right, I've edited it! Thanks for your comment
                                    – Jan
                                    Apr 5 '16 at 17:01














                                  up vote
                                  1
                                  down vote













                                  $$int x^3sqrt4-x^2spacetextdx=$$




                                  Substitute $u=x^2$ and $textdu=2xspacetextdx$:




                                  $$frac12int usqrt4-uspacetextdu=$$




                                  Substitute $s=4-u$ and $textds=-spacetextdu$:




                                  $$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
                                  $$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$




                                  Use:



                                  $$int y^bspacetextdy=fracy^b+1b+1+textC$$




                                  $$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
                                  $$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$






                                  share|cite|improve this answer






















                                  • You missed $u$ in the second integral.
                                    – Galc127
                                    Apr 5 '16 at 17:00










                                  • @Galc127 You're right, I've edited it! Thanks for your comment
                                    – Jan
                                    Apr 5 '16 at 17:01












                                  up vote
                                  1
                                  down vote










                                  up vote
                                  1
                                  down vote









                                  $$int x^3sqrt4-x^2spacetextdx=$$




                                  Substitute $u=x^2$ and $textdu=2xspacetextdx$:




                                  $$frac12int usqrt4-uspacetextdu=$$




                                  Substitute $s=4-u$ and $textds=-spacetextdu$:




                                  $$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
                                  $$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$




                                  Use:



                                  $$int y^bspacetextdy=fracy^b+1b+1+textC$$




                                  $$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
                                  $$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$






                                  share|cite|improve this answer














                                  $$int x^3sqrt4-x^2spacetextdx=$$




                                  Substitute $u=x^2$ and $textdu=2xspacetextdx$:




                                  $$frac12int usqrt4-uspacetextdu=$$




                                  Substitute $s=4-u$ and $textds=-spacetextdu$:




                                  $$frac12int(s-4)sqrtsspacetextds=frac12intleft[s^frac32-4sqrtsright]spacetextds=$$
                                  $$frac12left[int s^frac32spacetextds-4intsqrtsspacetextdsright]=frac12left[int s^frac32spacetextds-4int s^frac12spacetextdsright]=$$




                                  Use:



                                  $$int y^bspacetextdy=fracy^b+1b+1+textC$$




                                  $$frac12left[frac2s^frac525-4cdotfrac2s^frac323right]+textC=frac12left[frac2s^frac525-frac8s^frac323right]+textC=fracs^frac525-frac4s^frac323+textC=$$
                                  $$frac(4-u)^frac525-frac4(4-u)^frac323+textC=frac(4-x^2)^frac525-frac4(4-x^2)^frac323+textC$$







                                  share|cite|improve this answer














                                  share|cite|improve this answer



                                  share|cite|improve this answer








                                  edited Apr 5 '16 at 17:00

























                                  answered Apr 5 '16 at 16:53









                                  Jan

                                  21.6k31239




                                  21.6k31239











                                  • You missed $u$ in the second integral.
                                    – Galc127
                                    Apr 5 '16 at 17:00










                                  • @Galc127 You're right, I've edited it! Thanks for your comment
                                    – Jan
                                    Apr 5 '16 at 17:01
















                                  • You missed $u$ in the second integral.
                                    – Galc127
                                    Apr 5 '16 at 17:00










                                  • @Galc127 You're right, I've edited it! Thanks for your comment
                                    – Jan
                                    Apr 5 '16 at 17:01















                                  You missed $u$ in the second integral.
                                  – Galc127
                                  Apr 5 '16 at 17:00




                                  You missed $u$ in the second integral.
                                  – Galc127
                                  Apr 5 '16 at 17:00












                                  @Galc127 You're right, I've edited it! Thanks for your comment
                                  – Jan
                                  Apr 5 '16 at 17:01




                                  @Galc127 You're right, I've edited it! Thanks for your comment
                                  – Jan
                                  Apr 5 '16 at 17:01










                                  up vote
                                  1
                                  down vote













                                  The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$






                                  share|cite|improve this answer
























                                    up vote
                                    1
                                    down vote













                                    The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$






                                    share|cite|improve this answer






















                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$






                                      share|cite|improve this answer












                                      The single substitution $$u^2 = 4-x^2$$ will yield the simplest computation. Note this substitution implies $$x^2 = 4 - u^2, quad x , dx = -u , du,$$ hence $$x^3 sqrt4-x^2 , dx = x^2 sqrt4-x^2 cdot x , dx = (4-u^2)u(-u) , du = (u^4 - 4u^2) , du.$$ It immediately follows that $$beginalign* int x^3 sqrt4-x^2 , dx &= int u^4 - 4u^2 , du \ &= fracu^55 - frac4u^33 + C \ &= (4-x^2)^3/2 left( frac4-x^25 - frac43 right) + C \ &= -frac(4-x^2)^3/2(8+3x^2)15 + C. endalign*$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Apr 5 '16 at 17:31









                                      heropup

                                      60k65895




                                      60k65895




















                                          up vote
                                          0
                                          down vote













                                          Substituting $x=2sin t$, we get:
                                          $$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
                                          $$=32int (cos^2 t-cos ^4 t)sin tdt$$
                                          $$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$






                                          share|cite|improve this answer


























                                            up vote
                                            0
                                            down vote













                                            Substituting $x=2sin t$, we get:
                                            $$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
                                            $$=32int (cos^2 t-cos ^4 t)sin tdt$$
                                            $$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$






                                            share|cite|improve this answer
























                                              up vote
                                              0
                                              down vote










                                              up vote
                                              0
                                              down vote









                                              Substituting $x=2sin t$, we get:
                                              $$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
                                              $$=32int (cos^2 t-cos ^4 t)sin tdt$$
                                              $$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$






                                              share|cite|improve this answer














                                              Substituting $x=2sin t$, we get:
                                              $$ int x^3sqrt2^2-x^2dx=32int sin^3 t cos^2 t dt=32int(1-cos^2 t)cos ^2 tsin t dt$$
                                              $$=32int (cos^2 t-cos ^4 t)sin tdt$$
                                              $$=-32int z^2 dz + 32int z^4 dz$$ Where $z=cos t.$







                                              share|cite|improve this answer














                                              share|cite|improve this answer



                                              share|cite|improve this answer








                                              edited Apr 5 '16 at 17:20

























                                              answered Apr 5 '16 at 17:11









                                              Nikunj

                                              4,46111133




                                              4,46111133






















                                                   

                                                  draft saved


                                                  draft discarded


























                                                   


                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1729189%2fsolve-int-x3-sqrt4-x2dx%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest













































































                                                  這個網誌中的熱門文章

                                                  How to combine Bézier curves to a surface?

                                                  Why am i infinitely getting the same tweet with the Twitter Search API?

                                                  Is there any way to eliminate the singular point to solve this integral by hand or by approximations?