How to get reduction formula of $u_n=intfracx^nsqrtax^2+2bx+c$?
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$
My try:
Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:
Answer is of the form/ Spoiler:
$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$
integration
add a comment |Â
up vote
2
down vote
favorite
How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$
My try:
Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:
Answer is of the form/ Spoiler:
$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$
integration
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
1
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$
My try:
Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:
Answer is of the form/ Spoiler:
$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$
integration
How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$
My try:
Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:
Answer is of the form/ Spoiler:
$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$
integration
edited Sep 20 '14 at 10:20
Asaf Karagilaâ¦
293k31408736
293k31408736
asked Sep 12 '14 at 8:21
RE60K
13.9k22053
13.9k22053
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
1
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25
add a comment |Â
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
1
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
1
1
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
You can Proceed in this way:
$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$
$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$
$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$
Adding all
$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$
Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$
$implies$
$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
Using above result of $v_n$ in $(1)$ we get
$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
$implies$
$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
You can Proceed in this way:
$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$
$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$
$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$
Adding all
$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$
Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$
$implies$
$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
Using above result of $v_n$ in $(1)$ we get
$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
$implies$
$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$
add a comment |Â
up vote
3
down vote
accepted
You can Proceed in this way:
$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$
$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$
$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$
Adding all
$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$
Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$
$implies$
$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
Using above result of $v_n$ in $(1)$ we get
$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
$implies$
$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
You can Proceed in this way:
$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$
$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$
$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$
Adding all
$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$
Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$
$implies$
$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
Using above result of $v_n$ in $(1)$ we get
$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
$implies$
$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$
You can Proceed in this way:
$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$
$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$
$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$
Adding all
$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$
Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$
$implies$
$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
Using above result of $v_n$ in $(1)$ we get
$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$
$implies$
$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$
edited Sep 14 '14 at 6:30
RE60K
13.9k22053
13.9k22053
answered Sep 12 '14 at 10:55
Ekaveera Kumar Sharma
5,27311123
5,27311123
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f928508%2fhow-to-get-reduction-formula-of-u-n-int-fracxn-sqrtax22bxc%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
en.wikipedia.org/wiki/Integration_by_reduction_formulae
â lab bhattacharjee
Sep 12 '14 at 8:23
1
@labbhattacharjee they are just results!
â RE60K
Sep 12 '14 at 8:25