How to get reduction formula of $u_n=intfracx^nsqrtax^2+2bx+c$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2













How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$





My try:




Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:




Answer is of the form/ Spoiler:




$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$








share|cite|improve this question






















  • en.wikipedia.org/wiki/Integration_by_reduction_formulae
    – lab bhattacharjee
    Sep 12 '14 at 8:23






  • 1




    @labbhattacharjee they are just results!
    – RE60K
    Sep 12 '14 at 8:25














up vote
2
down vote

favorite
2













How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$





My try:




Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:




Answer is of the form/ Spoiler:




$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$








share|cite|improve this question






















  • en.wikipedia.org/wiki/Integration_by_reduction_formulae
    – lab bhattacharjee
    Sep 12 '14 at 8:23






  • 1




    @labbhattacharjee they are just results!
    – RE60K
    Sep 12 '14 at 8:25












up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2






How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$





My try:




Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:




Answer is of the form/ Spoiler:




$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$








share|cite|improve this question















How to get reduction formula of $$u_n=intfracx^nsqrtax^2+2bx+c$$





My try:




Here $P_n-1(x)$ is a polynomial of degree $(n-1)$
$$u_n=intfracx^nsqrtax^2+2bx+c=P_n-1(x)sqrtax^2+2bx+c+kintfracdxsqrtax^2+2bx+x$$
Differentiating:
$$x^n=P'_n-1(x)(ax^2+2bx+c)+frac12P_n-1(x)(2ax+2b)+k$$
$$implies k=0$$
I don't know how to proceed further:




Answer is of the form/ Spoiler:




$$(n+1)u_n+1+(2n+1)bu_n+ncu_n-1=?$$










share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 20 '14 at 10:20









Asaf Karagila♦

293k31408736




293k31408736










asked Sep 12 '14 at 8:21









RE60K

13.9k22053




13.9k22053











  • en.wikipedia.org/wiki/Integration_by_reduction_formulae
    – lab bhattacharjee
    Sep 12 '14 at 8:23






  • 1




    @labbhattacharjee they are just results!
    – RE60K
    Sep 12 '14 at 8:25
















  • en.wikipedia.org/wiki/Integration_by_reduction_formulae
    – lab bhattacharjee
    Sep 12 '14 at 8:23






  • 1




    @labbhattacharjee they are just results!
    – RE60K
    Sep 12 '14 at 8:25















en.wikipedia.org/wiki/Integration_by_reduction_formulae
– lab bhattacharjee
Sep 12 '14 at 8:23




en.wikipedia.org/wiki/Integration_by_reduction_formulae
– lab bhattacharjee
Sep 12 '14 at 8:23




1




1




@labbhattacharjee they are just results!
– RE60K
Sep 12 '14 at 8:25




@labbhattacharjee they are just results!
– RE60K
Sep 12 '14 at 8:25










1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










You can Proceed in this way:



$$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$



$$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$



$$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$



Adding all



$$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$



Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$



$implies$



$$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



Using above result of $v_n$ in $(1)$ we get



$$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



$implies$



$$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f928508%2fhow-to-get-reduction-formula-of-u-n-int-fracxn-sqrtax22bxc%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    You can Proceed in this way:



    $$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$



    $$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$



    $$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$



    Adding all



    $$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$



    Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$



    $implies$



    $$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



    Using above result of $v_n$ in $(1)$ we get



    $$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



    $implies$



    $$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$






    share|cite|improve this answer


























      up vote
      3
      down vote



      accepted










      You can Proceed in this way:



      $$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$



      $$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$



      $$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$



      Adding all



      $$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$



      Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$



      $implies$



      $$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



      Using above result of $v_n$ in $(1)$ we get



      $$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



      $implies$



      $$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$






      share|cite|improve this answer
























        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        You can Proceed in this way:



        $$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$



        $$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$



        $$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$



        Adding all



        $$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$



        Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$



        $implies$



        $$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



        Using above result of $v_n$ in $(1)$ we get



        $$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



        $implies$



        $$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$






        share|cite|improve this answer














        You can Proceed in this way:



        $$a, u_n+2=int fracax^n+2sqrtax^2+2bx+cdx$$



        $$2b,u_n+1=int frac2bx^n+1sqrtax^2+2bx+cdx$$



        $$c,u_n=int fraccx^nsqrtax^2+2bx+cdx$$



        Adding all



        $$a,u_n+2+2b,u_n+1+c,u_n=int x^nsqrtax^2+2bx+cdx=v_n tag1 $$



        Using Integration by Parts to evaluate $$v_n=int x^nsqrtax^2+2bx+cdx=(sqrtax^2+2bx+c)fracx^n+1n+1-frac1n+1int fracx^n+1(ax+b) sqrtax^2+2bx+c$$



        $implies$



        $$v_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



        Using above result of $v_n$ in $(1)$ we get



        $$a,u_n+2+2b,u_n+1+c,u_n=(sqrtax^2+2bx+c)fracx^n+1n+1-fraca,u_n+2n+1-fracb,u_n+1n+1$$



        $implies$



        $$a(n+2)u_n+2+b(2n+3)u_n+1+c(n+1)u_n=x^n+1sqrtax^2+2bx+c$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Sep 14 '14 at 6:30









        RE60K

        13.9k22053




        13.9k22053










        answered Sep 12 '14 at 10:55









        Ekaveera Kumar Sharma

        5,27311123




        5,27311123






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f928508%2fhow-to-get-reduction-formula-of-u-n-int-fracxn-sqrtax22bxc%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?