Real integration theorem (Laplace transform)

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite













Real Integration Theorem



This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.



(Original image here.)




Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.



beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*



(Original image here.)







share|cite|improve this question






















  • Laplace Transform of Integral
    – Hazem Orabi
    Aug 24 at 20:47














up vote
3
down vote

favorite













Real Integration Theorem



This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.



(Original image here.)




Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.



beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*



(Original image here.)







share|cite|improve this question






















  • Laplace Transform of Integral
    – Hazem Orabi
    Aug 24 at 20:47












up vote
3
down vote

favorite









up vote
3
down vote

favorite












Real Integration Theorem



This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.



(Original image here.)




Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.



beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*



(Original image here.)







share|cite|improve this question















Real Integration Theorem



This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.



(Original image here.)




Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.



beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*



(Original image here.)









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 24 at 18:51

























asked Aug 20 at 13:10









hello there

182210




182210











  • Laplace Transform of Integral
    – Hazem Orabi
    Aug 24 at 20:47
















  • Laplace Transform of Integral
    – Hazem Orabi
    Aug 24 at 20:47















Laplace Transform of Integral
– Hazem Orabi
Aug 24 at 20:47




Laplace Transform of Integral
– Hazem Orabi
Aug 24 at 20:47










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Correct, but use different variables:



$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$



We have:



$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$



Applying the famous technique, integration by parts:



$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$



so:



$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$



$$= frac1s int_0^infty f(t), e^-st , dt$$



$$ = frac1s, F(s).$$



Now, we add a second integral:



$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$



Again, we use integration by parts:



$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$



with:



$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$



Well, this is long:



$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$



$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888774%2freal-integration-theorem-laplace-transform%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Correct, but use different variables:



    $$mathscrLleft[ int_0^t f(tau) , dtauright]
    = int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$



    We have:



    $$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$



    Applying the famous technique, integration by parts:



    $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
    $$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$



    so:



    $$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$



    $$= frac1s int_0^infty f(t), e^-st , dt$$



    $$ = frac1s, F(s).$$



    Now, we add a second integral:



    $$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
    = int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$



    Again, we use integration by parts:



    $$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$



    with:



    $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
    $$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$



    Well, this is long:



    $$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$



    $$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
    $$ = frac1scdot frac1s F(s). $$






    share|cite|improve this answer


























      up vote
      0
      down vote













      Correct, but use different variables:



      $$mathscrLleft[ int_0^t f(tau) , dtauright]
      = int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$



      We have:



      $$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$



      Applying the famous technique, integration by parts:



      $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
      $$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$



      so:



      $$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$



      $$= frac1s int_0^infty f(t), e^-st , dt$$



      $$ = frac1s, F(s).$$



      Now, we add a second integral:



      $$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
      = int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$



      Again, we use integration by parts:



      $$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$



      with:



      $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
      $$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$



      Well, this is long:



      $$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$



      $$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
      $$ = frac1scdot frac1s F(s). $$






      share|cite|improve this answer
























        up vote
        0
        down vote










        up vote
        0
        down vote









        Correct, but use different variables:



        $$mathscrLleft[ int_0^t f(tau) , dtauright]
        = int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$



        We have:



        $$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$



        Applying the famous technique, integration by parts:



        $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
        $$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$



        so:



        $$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$



        $$= frac1s int_0^infty f(t), e^-st , dt$$



        $$ = frac1s, F(s).$$



        Now, we add a second integral:



        $$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
        = int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$



        Again, we use integration by parts:



        $$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$



        with:



        $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
        $$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$



        Well, this is long:



        $$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$



        $$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
        $$ = frac1scdot frac1s F(s). $$






        share|cite|improve this answer














        Correct, but use different variables:



        $$mathscrLleft[ int_0^t f(tau) , dtauright]
        = int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$



        We have:



        $$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$



        Applying the famous technique, integration by parts:



        $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
        $$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$



        so:



        $$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$



        $$= frac1s int_0^infty f(t), e^-st , dt$$



        $$ = frac1s, F(s).$$



        Now, we add a second integral:



        $$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
        = int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$



        Again, we use integration by parts:



        $$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$



        with:



        $$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
        $$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$



        Well, this is long:



        $$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$



        $$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
        $$ = frac1scdot frac1s F(s). $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered Aug 27 at 22:16









        David

        732410




        732410






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888774%2freal-integration-theorem-laplace-transform%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?