Real integration theorem (Laplace transform)
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Real Integration Theorem
This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.
(Original image here.)
Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.
beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*
(Original image here.)
laplace-transform control-theory
add a comment |Â
up vote
3
down vote
favorite
Real Integration Theorem
This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.
(Original image here.)
Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.
beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*
(Original image here.)
laplace-transform control-theory
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Real Integration Theorem
This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.
(Original image here.)
Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.
beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*
(Original image here.)
laplace-transform control-theory
Real Integration Theorem
This theorem establishes the relationship between the Laplace transform of a function and that of its integral.
It states that
$$
mathscrLleft[ int_0^t f(t) ,textdt right]
= frac1s F(s)
$$
The proof of this theorem is carried out by integrating the definition of the Laplace transform by parts.
This proof is similar to that of the real differentiation theorem and is left as an exercise.
The Laplace transform of the $n$th intgegral of a function is the transform of the function divides by $s^n$.
(Original image here.)
Hello. I would like to check whether my solving is right or not in proving the rule stated in the picture above.
Also I would like to know how is it solved for a second integral $(n=2)$? just to be convinced with the general rule of $n$th integral.
Thank you.
beginalign*
&, int_0^infty int_0^t f(t)
e^-st(-s) left( -frac1s right)
,textdt ,textdt
\
&left(
u = int_0^t f(t) , textdt,
quad
textdv = -s e^-st , textdt
right)
\
=&, - frac1s
left.
int_0^t f(t) e^-st ,textdt ,
right|_0^infty
+ frac1s
int_0^infty f(t) e^-st , textdt
\
=&, f(infty) e^-s infty frac1-s + f(0) + frac1s F(s)
= 0 + frac1s F(s)
endalign*
(Original image here.)
laplace-transform control-theory
edited Aug 24 at 18:51
asked Aug 20 at 13:10
hello there
182210
182210
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47
add a comment |Â
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Correct, but use different variables:
$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$
We have:
$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$
Applying the famous technique, integration by parts:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$
so:
$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$
$$= frac1s int_0^infty f(t), e^-st , dt$$
$$ = frac1s, F(s).$$
Now, we add a second integral:
$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$
Again, we use integration by parts:
$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$
with:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$
Well, this is long:
$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$
$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Correct, but use different variables:
$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$
We have:
$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$
Applying the famous technique, integration by parts:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$
so:
$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$
$$= frac1s int_0^infty f(t), e^-st , dt$$
$$ = frac1s, F(s).$$
Now, we add a second integral:
$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$
Again, we use integration by parts:
$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$
with:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$
Well, this is long:
$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$
$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$
add a comment |Â
up vote
0
down vote
Correct, but use different variables:
$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$
We have:
$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$
Applying the famous technique, integration by parts:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$
so:
$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$
$$= frac1s int_0^infty f(t), e^-st , dt$$
$$ = frac1s, F(s).$$
Now, we add a second integral:
$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$
Again, we use integration by parts:
$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$
with:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$
Well, this is long:
$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$
$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Correct, but use different variables:
$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$
We have:
$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$
Applying the famous technique, integration by parts:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$
so:
$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$
$$= frac1s int_0^infty f(t), e^-st , dt$$
$$ = frac1s, F(s).$$
Now, we add a second integral:
$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$
Again, we use integration by parts:
$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$
with:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$
Well, this is long:
$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$
$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$
Correct, but use different variables:
$$mathscrLleft[ int_0^t f(tau) , dtauright]
= int_0^infty e^-st int_0^t f(tau) , dtau , dt. $$
We have:
$$ int_0^infty e^-st int_0^t f(tau) , dtau , dt = int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. $$
Applying the famous technique, integration by parts:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t frac1s f(tau) , dtau quad Rightarrow quad du=frac1s f(t), $$
so:
$$int_0^infty s,e^-st int_0^t frac1s f(tau) , dtau , dt. = - frac1s e^-st left. int_0^t f(tau), dtau , right|_0^infty + frac1s int_0^infty f(t), e^-st , dt$$
$$= frac1s int_0^infty f(t), e^-st , dt$$
$$ = frac1s, F(s).$$
Now, we add a second integral:
$$mathscrLleft[ int_0^t int_0^sigma f(tau) , dtau , dsigmaright]
= int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt. $$
Again, we use integration by parts:
$$ int_0^infty e^-st left( int_0^t int_0^sigma f(tau) , dtau , dsigma right) dt = int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt, $$
with:
$$dv = s, e^-st dt quad Rightarrow quad v = -e^-st, $$
$$u = int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma quad Rightarrow quad du= int_0^t frac1s f(tau), dtau. $$
Well, this is long:
$$int_0^infty s, e^-st left( int_0^t int_0^sigma frac1s f(tau) , dtau , dsigma right) dt = - frac1s e^-st left. int_0^t int_0^sigma f(tau) , dtau , dsigma , right|_0^infty + int_0^infty e^-st int_0^t frac1s f(tau), dtau, $$
$$ = frac1s int_0^infty e^-st int_0^t f(tau), dtau, $$
$$ = frac1scdot frac1s F(s). $$
edited 2 days ago
answered Aug 27 at 22:16
David
732410
732410
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888774%2freal-integration-theorem-laplace-transform%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Laplace Transform of Integral
â Hazem Orabi
Aug 24 at 20:47