Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of âÂÂquasi-polynomialsâ $e^t (a_2t^2 + a_1t + a_0)$.
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of âÂÂquasi-polynomialsâ $e^t (a_2t^2 + a_1t + a_0)$.
Im a little unsure how to approach this:
Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.
linear-algebra differential-equations
add a comment |Â
up vote
0
down vote
favorite
Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of âÂÂquasi-polynomialsâ $e^t (a_2t^2 + a_1t + a_0)$.
Im a little unsure how to approach this:
Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.
linear-algebra differential-equations
1
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of âÂÂquasi-polynomialsâ $e^t (a_2t^2 + a_1t + a_0)$.
Im a little unsure how to approach this:
Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.
linear-algebra differential-equations
Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of âÂÂquasi-polynomialsâ $e^t (a_2t^2 + a_1t + a_0)$.
Im a little unsure how to approach this:
Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.
linear-algebra differential-equations
edited Aug 20 at 7:49
asked Aug 20 at 7:10
Dreeww
2918
2918
1
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48
add a comment |Â
1
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48
1
1
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$
add a comment |Â
up vote
1
down vote
Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
$$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$
add a comment |Â
up vote
0
down vote
If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and
$(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.
Can you now show that $d$ is linear ?
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$
add a comment |Â
up vote
1
down vote
accepted
Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$
Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$
edited Aug 20 at 8:39
Botond
3,9532632
3,9532632
answered Aug 20 at 8:01
Mostafa Ayaz
9,7483730
9,7483730
add a comment |Â
add a comment |Â
up vote
1
down vote
Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
$$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$
add a comment |Â
up vote
1
down vote
Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
$$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
$$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$
Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
$$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$
answered Aug 20 at 7:59
Christian Blatter
165k7109309
165k7109309
add a comment |Â
add a comment |Â
up vote
0
down vote
If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and
$(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.
Can you now show that $d$ is linear ?
add a comment |Â
up vote
0
down vote
If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and
$(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.
Can you now show that $d$ is linear ?
add a comment |Â
up vote
0
down vote
up vote
0
down vote
If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and
$(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.
Can you now show that $d$ is linear ?
If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and
$(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.
Can you now show that $d$ is linear ?
answered Aug 20 at 7:52
Fred
38.2k1238
38.2k1238
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888490%2fshow-that-differentiation-d-frac-ddt-is-a-linear-operator-on-the-3-dimens%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Can you show us your attempt?
â Kavi Rama Murthy
Aug 20 at 7:19
det= beginpmatrix 1-û & 0 & 0 \ 0 & (t+1)-û & 0 \ 0 & 0 & (t+2)-û\ endpmatrix
â Dreeww
Aug 20 at 7:27
Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
â Trebor
Aug 20 at 7:47
Yes it is thankyou got pointing that out
â Dreeww
Aug 20 at 7:48