Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of ‘quasi-polynomials’ $e^t (a_2t^2 + a_1t + a_0)$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of ‘quasi-polynomials’ $e^t (a_2t^2 + a_1t + a_0)$.



Im a little unsure how to approach this:



Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.







share|cite|improve this question


















  • 1




    Can you show us your attempt?
    – Kavi Rama Murthy
    Aug 20 at 7:19










  • det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
    – Dreeww
    Aug 20 at 7:27










  • Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
    – Trebor
    Aug 20 at 7:47










  • Yes it is thankyou got pointing that out
    – Dreeww
    Aug 20 at 7:48














up vote
0
down vote

favorite












Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of ‘quasi-polynomials’ $e^t (a_2t^2 + a_1t + a_0)$.



Im a little unsure how to approach this:



Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.







share|cite|improve this question


















  • 1




    Can you show us your attempt?
    – Kavi Rama Murthy
    Aug 20 at 7:19










  • det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
    – Dreeww
    Aug 20 at 7:27










  • Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
    – Trebor
    Aug 20 at 7:47










  • Yes it is thankyou got pointing that out
    – Dreeww
    Aug 20 at 7:48












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of ‘quasi-polynomials’ $e^t (a_2t^2 + a_1t + a_0)$.



Im a little unsure how to approach this:



Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.







share|cite|improve this question














Show that differentiation $D = frac ddt$ is a linear operator on the 3-dimensional space of ‘quasi-polynomials’ $e^t (a_2t^2 + a_1t + a_0)$.



Im a little unsure how to approach this:



Using $(e^t, te^t, t^2e^t)$ as a basis, write out the corresponding matrix.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 20 at 7:49

























asked Aug 20 at 7:10









Dreeww

2918




2918







  • 1




    Can you show us your attempt?
    – Kavi Rama Murthy
    Aug 20 at 7:19










  • det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
    – Dreeww
    Aug 20 at 7:27










  • Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
    – Trebor
    Aug 20 at 7:47










  • Yes it is thankyou got pointing that out
    – Dreeww
    Aug 20 at 7:48












  • 1




    Can you show us your attempt?
    – Kavi Rama Murthy
    Aug 20 at 7:19










  • det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
    – Dreeww
    Aug 20 at 7:27










  • Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
    – Trebor
    Aug 20 at 7:47










  • Yes it is thankyou got pointing that out
    – Dreeww
    Aug 20 at 7:48







1




1




Can you show us your attempt?
– Kavi Rama Murthy
Aug 20 at 7:19




Can you show us your attempt?
– Kavi Rama Murthy
Aug 20 at 7:19












det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
– Dreeww
Aug 20 at 7:27




det= beginpmatrix 1-λ & 0 & 0 \ 0 & (t+1)-λ & 0 \ 0 & 0 & (t+2)-λ\ endpmatrix
– Dreeww
Aug 20 at 7:27












Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
– Trebor
Aug 20 at 7:47




Is it a typo that you wrote $a_2^t 2$ instead of $a_2t^2$?
– Trebor
Aug 20 at 7:47












Yes it is thankyou got pointing that out
– Dreeww
Aug 20 at 7:48




Yes it is thankyou got pointing that out
– Dreeww
Aug 20 at 7:48










3 Answers
3






active

oldest

votes

















up vote
1
down vote



accepted










Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$






share|cite|improve this answer





























    up vote
    1
    down vote













    Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
    $$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$






    share|cite|improve this answer



























      up vote
      0
      down vote













      If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and



      $(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.



      Can you now show that $d$ is linear ?






      share|cite|improve this answer




















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888490%2fshow-that-differentiation-d-frac-ddt-is-a-linear-operator-on-the-3-dimens%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote



        accepted










        Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$






        share|cite|improve this answer


























          up vote
          1
          down vote



          accepted










          Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$






          share|cite|improve this answer
























            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$






            share|cite|improve this answer














            Let $f(t;a_0,a_1,a_2)=e^t (a_2t^ 2 + a_1t + a_0)$ and $f(t;b_0,b_1,b_2)=e^t (b_2t^ 2 + b_1t + b_0)$ therefore $$dfracddt(C_1f(t;a_0,a_1,a_2)+C_2f(t;b_0,b_1,b_2))=dfracddtf(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)\=f(t;C_1a_0+C_2b_0,C_1a_1+C_2b_1,C_1a_2+C_2b_2)+f(t;0,2C_1a_2+2C_2b_2,C_1a_1+C_2b_1)\=C_1(f(t;a_0,a_1,a_2)+f(t;0,2a_2,a_1))+C_2(f(t;b_0,b_1,b_2)+f(t;0,2b_2,b_1))\=C_1dfracddtf(t;a_0,a_1,a_2)+C_2dfracddtf(t;b_0,b_1,b_2)$$which completes our proof. To represent it in a matrix form we need to find out what happens on the basis under this operator. Let's define $$e_1=f(t;1,0,0)\e_2=f(t;0,1,0)\e_3=f(t;0,0,1)$$therefore $$Le_1=e_1\Le_2=e_1+e_2\Le_3=e_3+2e_2$$therefore the matrix is $$L=beginbmatrix1&1&0\0&1&2\0&0&1endbmatrix$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Aug 20 at 8:39









            Botond

            3,9532632




            3,9532632










            answered Aug 20 at 8:01









            Mostafa Ayaz

            9,7483730




            9,7483730




















                up vote
                1
                down vote













                Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
                $$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$






                share|cite|improve this answer
























                  up vote
                  1
                  down vote













                  Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
                  $$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$






                  share|cite|improve this answer






















                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
                    $$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$






                    share|cite|improve this answer












                    Let $V$ be the space of these "quasi polynomials". That $D$ is linear you know already. Therefore we only have to prove $D(V)subset V$. To this end it suffices to look at
                    $$dover dtbigl(t^n e^tbigr)= (t^n + nt^n-1) e^t .$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Aug 20 at 7:59









                    Christian Blatter

                    165k7109309




                    165k7109309




















                        up vote
                        0
                        down vote













                        If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and



                        $(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.



                        Can you now show that $d$ is linear ?






                        share|cite|improve this answer
























                          up vote
                          0
                          down vote













                          If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and



                          $(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.



                          Can you now show that $d$ is linear ?






                          share|cite|improve this answer






















                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and



                            $(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.



                            Can you now show that $d$ is linear ?






                            share|cite|improve this answer












                            If $f$ and $g$ are differentiable functions and $ alpha in mathbb R$, then the elementary rules are: $f+g$ and $ alpha f$ are differentiable and



                            $(f+g)'=f'+g'$ and $(alpha f)'= alpha f'$.



                            Can you now show that $d$ is linear ?







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Aug 20 at 7:52









                            Fred

                            38.2k1238




                            38.2k1238






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888490%2fshow-that-differentiation-d-frac-ddt-is-a-linear-operator-on-the-3-dimens%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                這個網誌中的熱門文章

                                How to combine Bézier curves to a surface?

                                Mutual Information Always Non-negative

                                Why am i infinitely getting the same tweet with the Twitter Search API?