Addition of two L-smooth function is also L-smooth?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Assume $f(x)$ has an L-Lipschitz continuous gradient say $L_1$ i.e there is a constant L>0 such that
$$|nabla f(x) - nabla f(y)|_2 le L|x-y|_2$$ for any $x,y$.



Also $g(x)$ has an L-Lipschitz continuous gradient, say $L_2$. Is $f(x)+g(x)$ has an L-Lipschitz continuous gradient?



I tried to use property of L2 norm but couldn't be sure if this is correct. Since
$| x + y|_2 leq | x|_2 + | y|_2$, the $L$ of $f(x)+g(x)$ would be $L_1+L_2$



I would appreciate any help.







share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Assume $f(x)$ has an L-Lipschitz continuous gradient say $L_1$ i.e there is a constant L>0 such that
    $$|nabla f(x) - nabla f(y)|_2 le L|x-y|_2$$ for any $x,y$.



    Also $g(x)$ has an L-Lipschitz continuous gradient, say $L_2$. Is $f(x)+g(x)$ has an L-Lipschitz continuous gradient?



    I tried to use property of L2 norm but couldn't be sure if this is correct. Since
    $| x + y|_2 leq | x|_2 + | y|_2$, the $L$ of $f(x)+g(x)$ would be $L_1+L_2$



    I would appreciate any help.







    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Assume $f(x)$ has an L-Lipschitz continuous gradient say $L_1$ i.e there is a constant L>0 such that
      $$|nabla f(x) - nabla f(y)|_2 le L|x-y|_2$$ for any $x,y$.



      Also $g(x)$ has an L-Lipschitz continuous gradient, say $L_2$. Is $f(x)+g(x)$ has an L-Lipschitz continuous gradient?



      I tried to use property of L2 norm but couldn't be sure if this is correct. Since
      $| x + y|_2 leq | x|_2 + | y|_2$, the $L$ of $f(x)+g(x)$ would be $L_1+L_2$



      I would appreciate any help.







      share|cite|improve this question














      Assume $f(x)$ has an L-Lipschitz continuous gradient say $L_1$ i.e there is a constant L>0 such that
      $$|nabla f(x) - nabla f(y)|_2 le L|x-y|_2$$ for any $x,y$.



      Also $g(x)$ has an L-Lipschitz continuous gradient, say $L_2$. Is $f(x)+g(x)$ has an L-Lipschitz continuous gradient?



      I tried to use property of L2 norm but couldn't be sure if this is correct. Since
      $| x + y|_2 leq | x|_2 + | y|_2$, the $L$ of $f(x)+g(x)$ would be $L_1+L_2$



      I would appreciate any help.









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 20 at 14:07









      Martin Sleziak

      43.5k6113260




      43.5k6113260










      asked Aug 20 at 12:56









      Pumpkin

      4311417




      4311417




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          I may be wrong but this seems like a simple use of sub-additivity of the norm and additivity of the gradient:



          $||nabla big( f+g big)(x) - nabla big(f+g)(y)||_2=BigVert nabla f(x)+nabla g(x)- big( nabla f(y)+nabla g(y) big) Big Vert_2=$



          $=Big Vert big( nabla f(x)-nabla f(y) big) + big( nabla g(x)-nabla g(y) big) Big Vert_2leq big Vert nabla f(x)-nabla f(y) big Vert_2+ big Vert nabla g(x)-nabla g(y) big Vert_2leq$



          $leq L_1cdot Vert x-y Vert_2+ L_2 cdot Vert x-y Vert_2= big( L_1+L_2 big) cdot Vert x-y Vert_2 $






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888753%2faddition-of-two-l-smooth-function-is-also-l-smooth%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            I may be wrong but this seems like a simple use of sub-additivity of the norm and additivity of the gradient:



            $||nabla big( f+g big)(x) - nabla big(f+g)(y)||_2=BigVert nabla f(x)+nabla g(x)- big( nabla f(y)+nabla g(y) big) Big Vert_2=$



            $=Big Vert big( nabla f(x)-nabla f(y) big) + big( nabla g(x)-nabla g(y) big) Big Vert_2leq big Vert nabla f(x)-nabla f(y) big Vert_2+ big Vert nabla g(x)-nabla g(y) big Vert_2leq$



            $leq L_1cdot Vert x-y Vert_2+ L_2 cdot Vert x-y Vert_2= big( L_1+L_2 big) cdot Vert x-y Vert_2 $






            share|cite|improve this answer
























              up vote
              0
              down vote













              I may be wrong but this seems like a simple use of sub-additivity of the norm and additivity of the gradient:



              $||nabla big( f+g big)(x) - nabla big(f+g)(y)||_2=BigVert nabla f(x)+nabla g(x)- big( nabla f(y)+nabla g(y) big) Big Vert_2=$



              $=Big Vert big( nabla f(x)-nabla f(y) big) + big( nabla g(x)-nabla g(y) big) Big Vert_2leq big Vert nabla f(x)-nabla f(y) big Vert_2+ big Vert nabla g(x)-nabla g(y) big Vert_2leq$



              $leq L_1cdot Vert x-y Vert_2+ L_2 cdot Vert x-y Vert_2= big( L_1+L_2 big) cdot Vert x-y Vert_2 $






              share|cite|improve this answer






















                up vote
                0
                down vote










                up vote
                0
                down vote









                I may be wrong but this seems like a simple use of sub-additivity of the norm and additivity of the gradient:



                $||nabla big( f+g big)(x) - nabla big(f+g)(y)||_2=BigVert nabla f(x)+nabla g(x)- big( nabla f(y)+nabla g(y) big) Big Vert_2=$



                $=Big Vert big( nabla f(x)-nabla f(y) big) + big( nabla g(x)-nabla g(y) big) Big Vert_2leq big Vert nabla f(x)-nabla f(y) big Vert_2+ big Vert nabla g(x)-nabla g(y) big Vert_2leq$



                $leq L_1cdot Vert x-y Vert_2+ L_2 cdot Vert x-y Vert_2= big( L_1+L_2 big) cdot Vert x-y Vert_2 $






                share|cite|improve this answer












                I may be wrong but this seems like a simple use of sub-additivity of the norm and additivity of the gradient:



                $||nabla big( f+g big)(x) - nabla big(f+g)(y)||_2=BigVert nabla f(x)+nabla g(x)- big( nabla f(y)+nabla g(y) big) Big Vert_2=$



                $=Big Vert big( nabla f(x)-nabla f(y) big) + big( nabla g(x)-nabla g(y) big) Big Vert_2leq big Vert nabla f(x)-nabla f(y) big Vert_2+ big Vert nabla g(x)-nabla g(y) big Vert_2leq$



                $leq L_1cdot Vert x-y Vert_2+ L_2 cdot Vert x-y Vert_2= big( L_1+L_2 big) cdot Vert x-y Vert_2 $







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 20 at 13:19









                Keen-ameteur

                726213




                726213






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888753%2faddition-of-two-l-smooth-function-is-also-l-smooth%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Why am i infinitely getting the same tweet with the Twitter Search API?

                    Is there any way to eliminate the singular point to solve this integral by hand or by approximations?