Show that the metropolis matrix is irreducible
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let
- $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$
- $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$
- $q$ be a stochastic matrix$^1$ on $E$
Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.
It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.
How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?
I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.
$^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$
$^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$
$^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$
$^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.
probability-theory stochastic-processes markov-chains monte-carlo
add a comment |Â
up vote
2
down vote
favorite
Let
- $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$
- $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$
- $q$ be a stochastic matrix$^1$ on $E$
Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.
It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.
How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?
I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.
$^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$
$^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$
$^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$
$^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.
probability-theory stochastic-processes markov-chains monte-carlo
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let
- $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$
- $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$
- $q$ be a stochastic matrix$^1$ on $E$
Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.
It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.
How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?
I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.
$^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$
$^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$
$^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$
$^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.
probability-theory stochastic-processes markov-chains monte-carlo
Let
- $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$
- $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$
- $q$ be a stochastic matrix$^1$ on $E$
Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.
It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.
How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?
I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.
$^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$
$^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$
$^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$
$^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.
probability-theory stochastic-processes markov-chains monte-carlo
asked Aug 20 at 9:03
0xbadf00d
2,06741128
2,06741128
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888556%2fshow-that-the-metropolis-matrix-is-irreducible%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password