Show that the metropolis matrix is irreducible

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Let



  • $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$

  • $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$

  • $q$ be a stochastic matrix$^1$ on $E$

Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.



It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.




How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?




I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.




$^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$



$^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$



$^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$



$^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.







share|cite|improve this question
























    up vote
    2
    down vote

    favorite












    Let



    • $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$

    • $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$

    • $q$ be a stochastic matrix$^1$ on $E$

    Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.



    It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.




    How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?




    I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.




    $^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$



    $^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$



    $^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$



    $^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.







    share|cite|improve this question






















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Let



      • $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$

      • $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$

      • $q$ be a stochastic matrix$^1$ on $E$

      Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.



      It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.




      How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?




      I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.




      $^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$



      $^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$



      $^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$



      $^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.







      share|cite|improve this question












      Let



      • $E$ be a countable set equipped with the discrete topology and $mathcal E:=mathcal B(E)$

      • $pi$ be a probability measure on $(E,mathcal E)$ with $$pi(x):=pi(leftxright)>0;;;textfor all xin Etag1$$

      • $q$ be a stochastic matrix$^1$ on $E$

      Now, let $$p(x,y):=begincasesq(x,y)minleft(1,fracpi(y)q(y,x)pi(x)q(x,y)right)&text, if xne ytext and q(x,y)>0\0&text, if xne ytext and q(x,y)=0\1-sum_zin Esetminusleftxrightp(x,z)&text, if x=yendcases$$ for $x,yin E$.



      It's easy to see that $p$ is reversible$^2$ with respect to $pi$ and hence $pi$ is stationary$^3$ with respect to $p$.




      How can we conclude that, if $q$ is irreducible$^4$ and $$forall x,yin E:q(x,y)>0Leftrightarrow q(y,x)>0,tag6$$ then $p$ is irreducible?




      I'm not sure if this is a simple fact following from $(3)$ or $(4)$, or if we we need to make use of the actual shape of $p$.




      $^1$ i.e. $q:Etimes Eto[0,1]$ with $$sum_yin Eq(x,y)=1;;;textfor all xin E.tag2$$



      $^2$ i.e. $$pi(x)p(x,y)=pi(y)p(y,x);;;textfor all x,yin E.tag3$$



      $^3$ i.e. $$pi p(y):=sum_xin Epi(x)p(x,y)=pi(y);;;textfor all yin E.tag4$$



      $^4$ i.e. $$forall x,yin E:exists ninmathbb N:q^n(x,y):=sum_zin Eq^n-1(x,z)p(z,y)>0,tag5$$ where $q^0(x,y):=1$ for all $x,yin E$.









      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 20 at 9:03









      0xbadf00d

      2,06741128




      2,06741128

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888556%2fshow-that-the-metropolis-matrix-is-irreducible%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888556%2fshow-that-the-metropolis-matrix-is-irreducible%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Carbon dioxide

          Why am i infinitely getting the same tweet with the Twitter Search API?