help showing a simple asymptotic relation?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












The solution to the Landau equation



$$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$



is



$$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.



If $l>0$ and $sigma>0$, the textbook showed that the above solution gives



$$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
$$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$



Can anybody suggest me how to show this asymptotic relation? Thank you in advance!







share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    The solution to the Landau equation



    $$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$



    is



    $$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
    where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.



    If $l>0$ and $sigma>0$, the textbook showed that the above solution gives



    $$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
    $$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$



    Can anybody suggest me how to show this asymptotic relation? Thank you in advance!







    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      The solution to the Landau equation



      $$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$



      is



      $$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
      where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.



      If $l>0$ and $sigma>0$, the textbook showed that the above solution gives



      $$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
      $$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$



      Can anybody suggest me how to show this asymptotic relation? Thank you in advance!







      share|cite|improve this question














      The solution to the Landau equation



      $$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$



      is



      $$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
      where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.



      If $l>0$ and $sigma>0$, the textbook showed that the above solution gives



      $$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
      $$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$



      Can anybody suggest me how to show this asymptotic relation? Thank you in advance!









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 21 at 2:02

























      asked Aug 20 at 13:12









      jsxs

      18617




      18617




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          Note
          begineqnarray
          lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
          &=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
          endeqnarray
          and hence
          begineqnarray
          lim_tto-inftyfraclvert A rvert ^2e^2sigma t
          &=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
          endeqnarray
          So $|A|sim A_0e^sigma t$ as $tto-infty$.






          share|cite|improve this answer




















          • Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
            – jsxs
            Aug 20 at 13:56










          • I forgot that you ask for $A_0to0$ too.
            – xpaul
            Aug 20 at 13:58










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888776%2fhelp-showing-a-simple-asymptotic-relation%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote













          Note
          begineqnarray
          lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
          &=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
          endeqnarray
          and hence
          begineqnarray
          lim_tto-inftyfraclvert A rvert ^2e^2sigma t
          &=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
          endeqnarray
          So $|A|sim A_0e^sigma t$ as $tto-infty$.






          share|cite|improve this answer




















          • Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
            – jsxs
            Aug 20 at 13:56










          • I forgot that you ask for $A_0to0$ too.
            – xpaul
            Aug 20 at 13:58














          up vote
          0
          down vote













          Note
          begineqnarray
          lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
          &=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
          endeqnarray
          and hence
          begineqnarray
          lim_tto-inftyfraclvert A rvert ^2e^2sigma t
          &=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
          endeqnarray
          So $|A|sim A_0e^sigma t$ as $tto-infty$.






          share|cite|improve this answer




















          • Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
            – jsxs
            Aug 20 at 13:56










          • I forgot that you ask for $A_0to0$ too.
            – xpaul
            Aug 20 at 13:58












          up vote
          0
          down vote










          up vote
          0
          down vote









          Note
          begineqnarray
          lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
          &=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
          endeqnarray
          and hence
          begineqnarray
          lim_tto-inftyfraclvert A rvert ^2e^2sigma t
          &=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
          endeqnarray
          So $|A|sim A_0e^sigma t$ as $tto-infty$.






          share|cite|improve this answer












          Note
          begineqnarray
          lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
          &=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
          endeqnarray
          and hence
          begineqnarray
          lim_tto-inftyfraclvert A rvert ^2e^2sigma t
          &=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
          endeqnarray
          So $|A|sim A_0e^sigma t$ as $tto-infty$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 20 at 13:47









          xpaul

          21.8k14454




          21.8k14454











          • Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
            – jsxs
            Aug 20 at 13:56










          • I forgot that you ask for $A_0to0$ too.
            – xpaul
            Aug 20 at 13:58
















          • Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
            – jsxs
            Aug 20 at 13:56










          • I forgot that you ask for $A_0to0$ too.
            – xpaul
            Aug 20 at 13:58















          Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
          – jsxs
          Aug 20 at 13:56




          Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
          – jsxs
          Aug 20 at 13:56












          I forgot that you ask for $A_0to0$ too.
          – xpaul
          Aug 20 at 13:58




          I forgot that you ask for $A_0to0$ too.
          – xpaul
          Aug 20 at 13:58












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888776%2fhelp-showing-a-simple-asymptotic-relation%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?