help showing a simple asymptotic relation?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
The solution to the Landau equation
$$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$
is
$$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.
If $l>0$ and $sigma>0$, the textbook showed that the above solution gives
$$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
$$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$
Can anybody suggest me how to show this asymptotic relation? Thank you in advance!
limits pde asymptotics
add a comment |Â
up vote
1
down vote
favorite
The solution to the Landau equation
$$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$
is
$$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.
If $l>0$ and $sigma>0$, the textbook showed that the above solution gives
$$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
$$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$
Can anybody suggest me how to show this asymptotic relation? Thank you in advance!
limits pde asymptotics
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The solution to the Landau equation
$$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$
is
$$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.
If $l>0$ and $sigma>0$, the textbook showed that the above solution gives
$$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
$$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$
Can anybody suggest me how to show this asymptotic relation? Thank you in advance!
limits pde asymptotics
The solution to the Landau equation
$$fracd vert Arvert^2d t=2sigma lvert A rvert^2-l lvert A rvert^4$$
is
$$lvert A rvert ^2= fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t ,$$
where $l$ and $sigma$ are constant, $A_0$ is the initial value of $lvert A rvert$.
If $l>0$ and $sigma>0$, the textbook showed that the above solution gives
$$lvert A rvert sim A_0 e^sigma t$$ as $tto-infty$ and $A_0to 0$. But I think simply
$$lim _t to -infty , A_0 to 0 lvert A rvert ^2=frac0infty=0$$
Can anybody suggest me how to show this asymptotic relation? Thank you in advance!
limits pde asymptotics
edited Aug 21 at 2:02
asked Aug 20 at 13:12
jsxs
18617
18617
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Note
begineqnarray
lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
&=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
endeqnarray
and hence
begineqnarray
lim_tto-inftyfraclvert A rvert ^2e^2sigma t
&=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
endeqnarray
So $|A|sim A_0e^sigma t$ as $tto-infty$.
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Note
begineqnarray
lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
&=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
endeqnarray
and hence
begineqnarray
lim_tto-inftyfraclvert A rvert ^2e^2sigma t
&=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
endeqnarray
So $|A|sim A_0e^sigma t$ as $tto-infty$.
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
add a comment |Â
up vote
0
down vote
Note
begineqnarray
lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
&=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
endeqnarray
and hence
begineqnarray
lim_tto-inftyfraclvert A rvert ^2e^2sigma t
&=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
endeqnarray
So $|A|sim A_0e^sigma t$ as $tto-infty$.
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Note
begineqnarray
lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
&=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
endeqnarray
and hence
begineqnarray
lim_tto-inftyfraclvert A rvert ^2e^2sigma t
&=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
endeqnarray
So $|A|sim A_0e^sigma t$ as $tto-infty$.
Note
begineqnarray
lvert A rvert ^2 &=& fracA_0^2fracl2sigma A_0^2+left(1-fracl2 sigma A_0^2 right) e^-2sigma t \
&=& fracA_0^2e^2sigma tfracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right)
endeqnarray
and hence
begineqnarray
lim_tto-inftyfraclvert A rvert ^2e^2sigma t
&=& lim_tto-inftyfracA_0^2fracl2sigma A_0^2e^2sigma t+left(1-fracl2 sigma A_0^2 right) =A_0^2.
endeqnarray
So $|A|sim A_0e^sigma t$ as $tto-infty$.
answered Aug 20 at 13:47
xpaul
21.8k14454
21.8k14454
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
add a comment |Â
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
Thank you @xpaul. But $A_0to 0$ at the same time. How do we have the second equality in the last expression? As we known, $f(x) sim 0$ as $x to 0$ is WRONG. (Nothing is ever asymptotic to zero.)
â jsxs
Aug 20 at 13:56
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
I forgot that you ask for $A_0to0$ too.
â xpaul
Aug 20 at 13:58
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888776%2fhelp-showing-a-simple-asymptotic-relation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password