Expressing a Gaussian-like integral in terms of error function, faliure of Glasser's master theorem?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question






















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15














up vote
1
down vote

favorite
1












So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question






















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question














So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 20 at 11:55









Harry Peter

5,48311438




5,48311438










asked Aug 20 at 11:25









Jack's wasted life

7,34311330




7,34311330











  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15
















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15















upper and lower bounds of the integral after substitution should be changed.
– Nosrati
Aug 20 at 11:29





upper and lower bounds of the integral after substitution should be changed.
– Nosrati
Aug 20 at 11:29













@Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
– Jack's wasted life
Aug 20 at 11:46




@Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
– Jack's wasted life
Aug 20 at 11:46












Sorry, I don't know.
– Nosrati
Aug 20 at 11:48




Sorry, I don't know.
– Nosrati
Aug 20 at 11:48




1




1




In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
– Rumpelstiltskin
Aug 20 at 12:04





In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
– Rumpelstiltskin
Aug 20 at 12:04













@Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
– Jack's wasted life
Aug 20 at 12:15




@Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
– Jack's wasted life
Aug 20 at 12:15










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
$$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
$$x = frac12a left(t-sqrtt^2-4abright) , ,$$
while for $x > sqrtb/a$ we have to use
$$x = frac12a left(t+sqrtt^2-4abright) , .$$




For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
$$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
$$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
beginalign
I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
&= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
endalign
Evaluating the remaining integrals as in the other case we find
$$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




Both results can be simplified and the final result for arbitrary $c>0$ is
beginalign
I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
&= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
endalign
which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
$$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
which can also be computed using the master theorem.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888661%2fexpressing-a-gaussian-like-integral-in-terms-of-error-function-faliure-of-glass%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



    As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
    $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



    Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
    $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
    while for $x > sqrtb/a$ we have to use
    $$x = frac12a left(t+sqrtt^2-4abright) , .$$




    For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
    $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
    Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
    $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




    For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
    beginalign
    I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
    &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
    endalign
    Evaluating the remaining integrals as in the other case we find
    $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




    Both results can be simplified and the final result for arbitrary $c>0$ is
    beginalign
    I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
    &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
    endalign
    which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
    $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
    which can also be computed using the master theorem.






    share|cite|improve this answer
























      up vote
      1
      down vote



      accepted










      Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



      As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
      $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



      Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
      $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
      while for $x > sqrtb/a$ we have to use
      $$x = frac12a left(t+sqrtt^2-4abright) , .$$




      For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
      $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
      Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
      $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




      For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
      beginalign
      I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
      &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
      endalign
      Evaluating the remaining integrals as in the other case we find
      $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




      Both results can be simplified and the final result for arbitrary $c>0$ is
      beginalign
      I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
      &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
      endalign
      which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
      $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
      which can also be computed using the master theorem.






      share|cite|improve this answer






















        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



        As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
        $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



        Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
        $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
        while for $x > sqrtb/a$ we have to use
        $$x = frac12a left(t+sqrtt^2-4abright) , .$$




        For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
        $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
        Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
        $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
        beginalign
        I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
        &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
        endalign
        Evaluating the remaining integrals as in the other case we find
        $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        Both results can be simplified and the final result for arbitrary $c>0$ is
        beginalign
        I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
        &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
        endalign
        which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
        $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
        which can also be computed using the master theorem.






        share|cite|improve this answer












        Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



        As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
        $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



        Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
        $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
        while for $x > sqrtb/a$ we have to use
        $$x = frac12a left(t+sqrtt^2-4abright) , .$$




        For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
        $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
        Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
        $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
        beginalign
        I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
        &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
        endalign
        Evaluating the remaining integrals as in the other case we find
        $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        Both results can be simplified and the final result for arbitrary $c>0$ is
        beginalign
        I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
        &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
        endalign
        which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
        $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
        which can also be computed using the master theorem.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 20 at 14:37









        ComplexYetTrivial

        2,977626




        2,977626






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888661%2fexpressing-a-gaussian-like-integral-in-terms-of-error-function-faliure-of-glass%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?