Expressing a Gaussian-like integral in terms of error function, faliure of Glasser's master theorem?

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question






















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15














up vote
1
down vote

favorite
1












So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question






















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?







share|cite|improve this question














So I have this integral $$
I=int_0^cexpleft(-a^2x^2-fracb^2x^2right),dx, quad(a,b>0)
$$
This is what I tried to write it in terms of error function.
$$
I=e^-2abint_0^cexpleft(-a^2left(x-fracbaxright)^2right),dx
$$
By Glasser's master theorem
$$
I=e^2abint_0^ce^-a^2x^2,dx=fracsqrtpi e^2ab2atexterf(ac)
$$
But according to eq 5 here the correct answer is
$$
I=fracsqrtpi4a(e^2abtexterf(ax+b/x)+e^-2abtexterf(ax-b/x))
$$
What went wrong here and how to get the correct answer?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 20 at 11:55









Harry Peter

5,48311438




5,48311438










asked Aug 20 at 11:25









Jack's wasted life

7,34311330




7,34311330











  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15
















  • upper and lower bounds of the integral after substitution should be changed.
    – Nosrati
    Aug 20 at 11:29











  • @Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
    – Jack's wasted life
    Aug 20 at 11:46










  • Sorry, I don't know.
    – Nosrati
    Aug 20 at 11:48






  • 1




    In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
    – Rumpelstiltskin
    Aug 20 at 12:04











  • @Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
    – Jack's wasted life
    Aug 20 at 12:15















upper and lower bounds of the integral after substitution should be changed.
– Nosrati
Aug 20 at 11:29





upper and lower bounds of the integral after substitution should be changed.
– Nosrati
Aug 20 at 11:29













@Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
– Jack's wasted life
Aug 20 at 11:46




@Nosrati Doing that I got one erfc not 2 erf s. Would you mind writing down an answer? I'll vote and accept.
– Jack's wasted life
Aug 20 at 11:46












Sorry, I don't know.
– Nosrati
Aug 20 at 11:48




Sorry, I don't know.
– Nosrati
Aug 20 at 11:48




1




1




In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
– Rumpelstiltskin
Aug 20 at 12:04





In Glasser's master theorem, bounds of integration are from $-infty$ to $infty$, or am I missing something? Also, those are indefinite
– Rumpelstiltskin
Aug 20 at 12:04













@Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
– Jack's wasted life
Aug 20 at 12:15




@Rumpelstiltskin But you can always assume that the integrand vanishes elsewhere.
– Jack's wasted life
Aug 20 at 12:15










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
$$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
$$x = frac12a left(t-sqrtt^2-4abright) , ,$$
while for $x > sqrtb/a$ we have to use
$$x = frac12a left(t+sqrtt^2-4abright) , .$$




For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
$$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
$$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
beginalign
I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
&= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
endalign
Evaluating the remaining integrals as in the other case we find
$$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




Both results can be simplified and the final result for arbitrary $c>0$ is
beginalign
I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
&= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
endalign
which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
$$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
which can also be computed using the master theorem.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888661%2fexpressing-a-gaussian-like-integral-in-terms-of-error-function-faliure-of-glass%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



    As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
    $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



    Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
    $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
    while for $x > sqrtb/a$ we have to use
    $$x = frac12a left(t+sqrtt^2-4abright) , .$$




    For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
    $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
    Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
    $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




    For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
    beginalign
    I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
    &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
    endalign
    Evaluating the remaining integrals as in the other case we find
    $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




    Both results can be simplified and the final result for arbitrary $c>0$ is
    beginalign
    I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
    &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
    endalign
    which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
    $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
    which can also be computed using the master theorem.






    share|cite|improve this answer
























      up vote
      1
      down vote



      accepted










      Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



      As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
      $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



      Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
      $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
      while for $x > sqrtb/a$ we have to use
      $$x = frac12a left(t+sqrtt^2-4abright) , .$$




      For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
      $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
      Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
      $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




      For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
      beginalign
      I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
      &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
      endalign
      Evaluating the remaining integrals as in the other case we find
      $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




      Both results can be simplified and the final result for arbitrary $c>0$ is
      beginalign
      I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
      &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
      endalign
      which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
      $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
      which can also be computed using the master theorem.






      share|cite|improve this answer






















        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



        As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
        $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



        Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
        $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
        while for $x > sqrtb/a$ we have to use
        $$x = frac12a left(t+sqrtt^2-4abright) , .$$




        For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
        $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
        Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
        $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
        beginalign
        I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
        &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
        endalign
        Evaluating the remaining integrals as in the other case we find
        $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        Both results can be simplified and the final result for arbitrary $c>0$ is
        beginalign
        I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
        &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
        endalign
        which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
        $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
        which can also be computed using the master theorem.






        share|cite|improve this answer












        Without loss of generality we can assume $c>0$ , since $c<0$ only changes the sign of the integral.



        As already discussed in the comments, Glasser's master theorem does not apply here. We can instead write the integral as
        $$ I = mathrme^2ab int limits_0^c mathrme^-(a x + b/x)^2 , mathrmd x , .$$



        Now we would like to let $a x + b/x = t$ . Since this map is not bijective, we need to be careful here! For $0<x<sqrtb/a$ the correct inverse is
        $$x = frac12a left(t-sqrtt^2-4abright) , ,$$
        while for $x > sqrtb/a$ we have to use
        $$x = frac12a left(t+sqrtt^2-4abright) , .$$




        For $c leq sqrtb/a , Leftrightarrow , a c - b/c leq 0$ we only need the first version. The substitution yields
        $$ I = fracmathrme^2ab2a int limits_ac+b/c^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t , . $$
        Changing variables once more for the first part ($u = sqrtt^2 - 4ab$) and using the complementary error function $operatornameerfc = 1-operatornameerf$ we obtain
        $$ I = fracsqrtpi4a left[mathrme^-2ab operatornameerfc(|ac - b/c|) - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        For $c > sqrtb/a , Leftrightarrow , a c - b/c > 0$ we have to split the integral:
        beginalign
        I &= mathrme^2ab leftint limits_0^sqrtb/a mathrme^-(a x + b/x)^2 , mathrmd x + int limits_sqrtb/a^c mathrme^-(a x + b/x)^2 , mathrmd x right \
        &= fracmathrme^2ab2a leftint limits_2sqrtab^infty left[fractsqrtt^2-4ab - 1right]mathrme^-t^2 , mathrmd t + int limits_2sqrtab^ac+b/c left[1 + fractsqrtt^2-4abright]mathrme^-t^2 , mathrmd t right , .
        endalign
        Evaluating the remaining integrals as in the other case we find
        $$ I = fracsqrtpi4a left[mathrme^-2ab [1+operatornameerf(ac - b/c)] - mathrme^2ab operatornameerfc(ac + b/c)right] , .$$




        Both results can be simplified and the final result for arbitrary $c>0$ is
        beginalign
        I &= fracsqrtpi4a left[mathrme^-2ab operatornameerfc(b/c - ac) - mathrme^2ab operatornameerfc(b/c + ac)right] \
        &= fracsqrtpi4a left[mathrme^2ab operatornameerf(ac+b/c) + mathrme^-2ab operatornameerf(ac-b/c) - 2 sinh(2ab)right] , ,
        endalign
        which agrees with the result from the table (except for a constant, of course). Letting $c to infty$ we obtain the integral
        $$ int limits_-infty^infty mathrme^-a^2 x^2 - b^2 /x^2 , mathrmd x = fracsqrtpia mathrme^-2ab , , $$
        which can also be computed using the master theorem.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 20 at 14:37









        ComplexYetTrivial

        2,977626




        2,977626






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888661%2fexpressing-a-gaussian-like-integral-in-terms-of-error-function-faliure-of-glass%23new-answer', 'question_page');

            );

            Post as a guest













































































            2P qcUy64dnFlxOqMQvfMbd,lsTd2
            bl5 5tAQ,E0eBo8nnNjQ,ekwDt gmI sS2MmCF nONAbXRGUV9F,5XQiS RWnOPUyjHJ1y7WU7UVq8XL qRZLW

            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Propositional logic and tautologies

            Distribution of Stopped Wiener Process with Stochastic Volatility