Sum of 1/n^4 using a half period cosine series
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.
The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated
differential-equations fourier-series parsevals-identity
add a comment |Â
up vote
0
down vote
favorite
I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.
The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated
differential-equations fourier-series parsevals-identity
3
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.
The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated
differential-equations fourier-series parsevals-identity
I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.
The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated
differential-equations fourier-series parsevals-identity
edited Aug 7 at 16:02
asked Aug 7 at 15:59
yipz
323
323
3
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03
add a comment |Â
3
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03
3
3
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
5
down vote
accepted
It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$
begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*
are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,
Also,
begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*
The odd and even sum respectively becomes,
begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*
In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.
+1 for the nice answer
â Isham
Aug 7 at 17:52
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$
begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*
are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,
Also,
begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*
The odd and even sum respectively becomes,
begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*
In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.
+1 for the nice answer
â Isham
Aug 7 at 17:52
add a comment |Â
up vote
5
down vote
accepted
It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$
begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*
are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,
Also,
begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*
The odd and even sum respectively becomes,
begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*
In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.
+1 for the nice answer
â Isham
Aug 7 at 17:52
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$
begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*
are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,
Also,
begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*
The odd and even sum respectively becomes,
begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*
In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.
It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$
begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*
are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,
Also,
begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*
The odd and even sum respectively becomes,
begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*
In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.
answered Aug 7 at 17:17
NivPai
66319
66319
+1 for the nice answer
â Isham
Aug 7 at 17:52
add a comment |Â
+1 for the nice answer
â Isham
Aug 7 at 17:52
+1 for the nice answer
â Isham
Aug 7 at 17:52
+1 for the nice answer
â Isham
Aug 7 at 17:52
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875113%2fsum-of-1-n4-using-a-half-period-cosine-series%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
3
$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
â Jean-Claude Arbaut
Aug 7 at 16:02
ah beautiful, thankyou sir
â yipz
Aug 7 at 16:03