Sum of 1/n^4 using a half period cosine series

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.



The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated







share|cite|improve this question

















  • 3




    $$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
    – Jean-Claude Arbaut
    Aug 7 at 16:02











  • ah beautiful, thankyou sir
    – yipz
    Aug 7 at 16:03














up vote
0
down vote

favorite












I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.



The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated







share|cite|improve this question

















  • 3




    $$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
    – Jean-Claude Arbaut
    Aug 7 at 16:02











  • ah beautiful, thankyou sir
    – yipz
    Aug 7 at 16:03












up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.



The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated







share|cite|improve this question













I am aware that I can solve the $$sum_n=1^inftyfrac1n^4,$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.



The result gives a series of $$ int_0^2x^2 dx= b+asum_n=0^inftyfrac1(2n+1)^4,$$ where b and a are real numbers, thus giving me a sum for the odd terms.
I am unsure how to compute the even terms with this method any help would be appreciated









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 7 at 16:02
























asked Aug 7 at 15:59









yipz

323




323







  • 3




    $$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
    – Jean-Claude Arbaut
    Aug 7 at 16:02











  • ah beautiful, thankyou sir
    – yipz
    Aug 7 at 16:03












  • 3




    $$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
    – Jean-Claude Arbaut
    Aug 7 at 16:02











  • ah beautiful, thankyou sir
    – yipz
    Aug 7 at 16:03







3




3




$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
– Jean-Claude Arbaut
Aug 7 at 16:02





$$sum_n=1^inftyfrac1n^4=sum_n=1^inftyfrac1(2n)^4+sum_n=1^inftyfrac1(2n-1)^4$$ hence $$sum_n=1^inftyfrac1(2n-1)^4=dfrac1516sum_n=1^inftyfrac1n^4$$
– Jean-Claude Arbaut
Aug 7 at 16:02













ah beautiful, thankyou sir
– yipz
Aug 7 at 16:03




ah beautiful, thankyou sir
– yipz
Aug 7 at 16:03










1 Answer
1






active

oldest

votes

















up vote
5
down vote



accepted










It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$



begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*



are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,



Also,



begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*



The odd and even sum respectively becomes,



begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*



In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.






share|cite|improve this answer





















  • +1 for the nice answer
    – Isham
    Aug 7 at 17:52










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875113%2fsum-of-1-n4-using-a-half-period-cosine-series%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
5
down vote



accepted










It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$



begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*



are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,



Also,



begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*



The odd and even sum respectively becomes,



begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*



In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.






share|cite|improve this answer





















  • +1 for the nice answer
    – Isham
    Aug 7 at 17:52














up vote
5
down vote



accepted










It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$



begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*



are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,



Also,



begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*



The odd and even sum respectively becomes,



begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*



In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.






share|cite|improve this answer





















  • +1 for the nice answer
    – Isham
    Aug 7 at 17:52












up vote
5
down vote



accepted







up vote
5
down vote



accepted






It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$



begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*



are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,



Also,



begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*



The odd and even sum respectively becomes,



begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*



In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.






share|cite|improve this answer













It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here.
The Riemann Zeta function $zeta(s)$ and the complementary function Dirichlet alternating zeta function $eta(s)$



begineqnarray*
zeta(s) &=& sum_n=1^inftyfrac1n^s \
eta(s) &=& -sum_n=1^inftyfrac(-1)^nn^s
endeqnarray*



are related by
begineqnarray
eta(s) &=& left(1-2^1-sright)zeta(s)
endeqnarray,



Also,



begineqnarray*
2 sum_m=1^inftyfrac1(2 m)^s &=& sum_n=1^inftyfrac1n^s + sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(2^-sright) zeta(s) \
2 sum_m=1^inftyfrac1(2 m-1)^s &=& sum_n=1^inftyfrac1n^s - sum_n=1^inftyfrac(-1)^nn^s \
&=& 2 left(1-2^-sright) zeta(s)
endeqnarray*



The odd and even sum respectively becomes,



begineqnarray*
sum_m=1^inftyfrac1(2 m)^s &=& 2^-szeta(s) \
sum_m=1^inftyfrac1(2 m-1)^s &=& left(1-2^-sright) zeta(s)
endeqnarray*



In the particular case $s=4$, it becomes $frac116 zeta(4)$ and $frac1516 zeta(4)$ as Jean-Claude Arbaut arrived at.







share|cite|improve this answer













share|cite|improve this answer



share|cite|improve this answer











answered Aug 7 at 17:17









NivPai

66319




66319











  • +1 for the nice answer
    – Isham
    Aug 7 at 17:52
















  • +1 for the nice answer
    – Isham
    Aug 7 at 17:52















+1 for the nice answer
– Isham
Aug 7 at 17:52




+1 for the nice answer
– Isham
Aug 7 at 17:52












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875113%2fsum-of-1-n4-using-a-half-period-cosine-series%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?