Study convergence of the series $sumlimits_nleft(left(3+3^-n^3right)^n^2-3^k(n)right)$, where $k(n)=fracn^3 +n^63^n^21+n^43^n^2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1













The question is to study the convergence of the series $sum x(n)$, where
$$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$




I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.







share|cite|improve this question

























    up vote
    1
    down vote

    favorite
    1













    The question is to study the convergence of the series $sum x(n)$, where
    $$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$




    I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.







    share|cite|improve this question























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1






      The question is to study the convergence of the series $sum x(n)$, where
      $$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$




      I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.







      share|cite|improve this question














      The question is to study the convergence of the series $sum x(n)$, where
      $$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$




      I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 7 at 20:12









      Did

      242k23208443




      242k23208443









      asked Aug 7 at 17:48









      Antony Magnavacchi

      92




      92




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote














          Tools:



          • If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.

          • If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.



          Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.






          share|cite|improve this answer























            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875199%2fstudy-convergence-of-the-series-sum-limits-n-left-left33-n3-rightn2%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote














            Tools:



            • If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.

            • If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.



            Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.






            share|cite|improve this answer



























              up vote
              2
              down vote














              Tools:



              • If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.

              • If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.



              Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.






              share|cite|improve this answer

























                up vote
                2
                down vote










                up vote
                2
                down vote










                Tools:



                • If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.

                • If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.



                Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.






                share|cite|improve this answer
















                Tools:



                • If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.

                • If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.



                Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.







                share|cite|improve this answer















                share|cite|improve this answer



                share|cite|improve this answer








                edited Aug 7 at 20:14


























                answered Aug 7 at 20:09









                Did

                242k23208443




                242k23208443






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875199%2fstudy-convergence-of-the-series-sum-limits-n-left-left33-n3-rightn2%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?