Study convergence of the series $sumlimits_nleft(left(3+3^-n^3right)^n^2-3^k(n)right)$, where $k(n)=fracn^3 +n^63^n^21+n^43^n^2$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
The question is to study the convergence of the series $sum x(n)$, where
$$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$
I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.
sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
The question is to study the convergence of the series $sum x(n)$, where
$$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$
I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.
sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The question is to study the convergence of the series $sum x(n)$, where
$$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$
I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.
sequences-and-series
The question is to study the convergence of the series $sum x(n)$, where
$$x(n)=left(3+3^-n^3right)^n^2-3^k(n)qquad k(n)=fracn^3 +n^63^n^21+n^43^n^2$$
I tried to put in evidence $3^k(n)$ or to transform every $3^x$ into $e^xlog(3)$, but with no success.
sequences-and-series
edited Aug 7 at 20:12
Did
242k23208443
242k23208443
asked Aug 7 at 17:48
Antony Magnavacchi
92
92
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
Tools:
- If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.
- If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.
Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Tools:
- If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.
- If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.
Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.
add a comment |Â
up vote
2
down vote
Tools:
- If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.
- If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.
Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Tools:
- If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.
- If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.
Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.
Tools:
- If $a_nto0$ and $a_nb_nto0$, then $(1+a_n)^b_n-1sim a_nb_n$.
- If $c>0$ and $d_nto0$, then $c^d_n-1sim d_nlog c$.
Note that $$x(n)=3^n^2left(y(n)-3^ell(n)right)$$ with $$y(n)=left(1+3^-n^3-1right)^n^2$$ and $$ell(n)=k(n)-n^2=fracn^3-n^21+n^43^n^2sim n^-13^-n^2$$ Thus, $y(n)to1$ and $3^ell(n)to1$ with $$y(n)-1sim n^23^-n^3-1qquad3^ell(n)-1simell(n)log3sim n^-13^-n^2log3$$ This implies that $$y(n)-3^ell(n)sim-n^-13^-n^2log3$$ hence $$x(n)sim-n^-1log3$$ and the series $sum x(n)$ diverges.
edited Aug 7 at 20:14
answered Aug 7 at 20:09
Did
242k23208443
242k23208443
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875199%2fstudy-convergence-of-the-series-sum-limits-n-left-left33-n3-rightn2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password