Integrate $int_0^2pifrac1(5-3sin(t))^2dt$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I have to compute the following integral:
$$int_0^2pifrac1(5-3sin(t))^2dt$$



Let $z= e^it$, then we write the integral als an integral over the unit circle $|z|=1$.



$$int_=1frac1left(5-3left[frac12ileft(z-frac1zright)right]right)^2frac1izdz=$$
$$-iint_=1frac zleft(5z-frac32i+frac32iz^2right)^2dz=$$
$$-4iint_=1frac z(z+3i)^2left(z+frac13iright)^2 dz=$$
$$-4i*2pi i*textResleft(f,-frac i3right)$$



Since $-3i$ lies outside the unit circle. Also, $-frac i3$ is a pole of order $2$ and $f(z)=frac z(z+3i)^2left(z+frac13iright)^2$.



I calculated the residue, and found:



$$textResleft(f,-frac i3right) =
left[frac z(z+3i)^2right]'_z=-frac i3
=left[frac-z + 3i(z + 3i)^2right]_z=-frac i3
=fracfrac i3 + 3ileft(-frac i3 + 3iright)^2
=-frac45256$$



So the end answer would be:



$$-4i*2pi i*-frac45256=frac45pi32$$



However, this is not the correct answer. The right answer is namely $frac5 pi32$. I do not really see where I made the mistake, so if anyone could give me a helping hand, that would be really nice!







share|cite|improve this question

















  • 2




    See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
    – Batominovski
    Aug 7 at 18:02















up vote
1
down vote

favorite












I have to compute the following integral:
$$int_0^2pifrac1(5-3sin(t))^2dt$$



Let $z= e^it$, then we write the integral als an integral over the unit circle $|z|=1$.



$$int_=1frac1left(5-3left[frac12ileft(z-frac1zright)right]right)^2frac1izdz=$$
$$-iint_=1frac zleft(5z-frac32i+frac32iz^2right)^2dz=$$
$$-4iint_=1frac z(z+3i)^2left(z+frac13iright)^2 dz=$$
$$-4i*2pi i*textResleft(f,-frac i3right)$$



Since $-3i$ lies outside the unit circle. Also, $-frac i3$ is a pole of order $2$ and $f(z)=frac z(z+3i)^2left(z+frac13iright)^2$.



I calculated the residue, and found:



$$textResleft(f,-frac i3right) =
left[frac z(z+3i)^2right]'_z=-frac i3
=left[frac-z + 3i(z + 3i)^2right]_z=-frac i3
=fracfrac i3 + 3ileft(-frac i3 + 3iright)^2
=-frac45256$$



So the end answer would be:



$$-4i*2pi i*-frac45256=frac45pi32$$



However, this is not the correct answer. The right answer is namely $frac5 pi32$. I do not really see where I made the mistake, so if anyone could give me a helping hand, that would be really nice!







share|cite|improve this question

















  • 2




    See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
    – Batominovski
    Aug 7 at 18:02













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I have to compute the following integral:
$$int_0^2pifrac1(5-3sin(t))^2dt$$



Let $z= e^it$, then we write the integral als an integral over the unit circle $|z|=1$.



$$int_=1frac1left(5-3left[frac12ileft(z-frac1zright)right]right)^2frac1izdz=$$
$$-iint_=1frac zleft(5z-frac32i+frac32iz^2right)^2dz=$$
$$-4iint_=1frac z(z+3i)^2left(z+frac13iright)^2 dz=$$
$$-4i*2pi i*textResleft(f,-frac i3right)$$



Since $-3i$ lies outside the unit circle. Also, $-frac i3$ is a pole of order $2$ and $f(z)=frac z(z+3i)^2left(z+frac13iright)^2$.



I calculated the residue, and found:



$$textResleft(f,-frac i3right) =
left[frac z(z+3i)^2right]'_z=-frac i3
=left[frac-z + 3i(z + 3i)^2right]_z=-frac i3
=fracfrac i3 + 3ileft(-frac i3 + 3iright)^2
=-frac45256$$



So the end answer would be:



$$-4i*2pi i*-frac45256=frac45pi32$$



However, this is not the correct answer. The right answer is namely $frac5 pi32$. I do not really see where I made the mistake, so if anyone could give me a helping hand, that would be really nice!







share|cite|improve this question













I have to compute the following integral:
$$int_0^2pifrac1(5-3sin(t))^2dt$$



Let $z= e^it$, then we write the integral als an integral over the unit circle $|z|=1$.



$$int_=1frac1left(5-3left[frac12ileft(z-frac1zright)right]right)^2frac1izdz=$$
$$-iint_=1frac zleft(5z-frac32i+frac32iz^2right)^2dz=$$
$$-4iint_=1frac z(z+3i)^2left(z+frac13iright)^2 dz=$$
$$-4i*2pi i*textResleft(f,-frac i3right)$$



Since $-3i$ lies outside the unit circle. Also, $-frac i3$ is a pole of order $2$ and $f(z)=frac z(z+3i)^2left(z+frac13iright)^2$.



I calculated the residue, and found:



$$textResleft(f,-frac i3right) =
left[frac z(z+3i)^2right]'_z=-frac i3
=left[frac-z + 3i(z + 3i)^2right]_z=-frac i3
=fracfrac i3 + 3ileft(-frac i3 + 3iright)^2
=-frac45256$$



So the end answer would be:



$$-4i*2pi i*-frac45256=frac45pi32$$



However, this is not the correct answer. The right answer is namely $frac5 pi32$. I do not really see where I made the mistake, so if anyone could give me a helping hand, that would be really nice!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 7 at 18:36









Robert Howard

1,331620




1,331620









asked Aug 7 at 17:59









Katie

1518




1518







  • 2




    See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
    – Batominovski
    Aug 7 at 18:02













  • 2




    See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
    – Batominovski
    Aug 7 at 18:02








2




2




See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
– Batominovski
Aug 7 at 18:02





See this related post: math.stackexchange.com/questions/2874730/…. Although you have $sin$ in your integral, the answer will be the same if you replace $sin$ by $cos$ and use the result from the link. That is, $$int_0^2pi,frac1big(5-3,sin(t)big)^2,textdt=int_0^2pi,frac1big(5-3,cos(t)big)^2,textdt=frac125,left(frac2pileft(1-left(frac35right)^2right)^frac32right),.$$ Thus, the final result is indeed $dfrac5pi32$.
– Batominovski
Aug 7 at 18:02











1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










$$I=int_0^2pi frac1(5-3sin(t))^2 dt=oint _=1frac1left(5-3fracz^2-12izright)^2fracdziz$$ Now here its a small mistake, note that when you get to the same denominator you should have: $$I=oint _=1frac(2iz)^2left(10iz-3(z^2-1)right)^2fracdziz=4ioint_=1fracz(3z^2-10iz-3)^2dz$$ Now here you did another small mistake $$(3z^2-10iz-3)^2=9(z-3i)^2(z-i/3)^2$$ The next step is like yours. $$I=frac4i92pi i textRes(f,fraci3)=-frac8pi9left(fracz(z-3i)^2right)'_z=fraci3=frac8pi9fraci/3+3i(i/3-3i)^3= frac8pi9frac45256=frac5pi32$$






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875211%2fintegrate-int-02-pi-frac15-3-sint2dt%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    $$I=int_0^2pi frac1(5-3sin(t))^2 dt=oint _=1frac1left(5-3fracz^2-12izright)^2fracdziz$$ Now here its a small mistake, note that when you get to the same denominator you should have: $$I=oint _=1frac(2iz)^2left(10iz-3(z^2-1)right)^2fracdziz=4ioint_=1fracz(3z^2-10iz-3)^2dz$$ Now here you did another small mistake $$(3z^2-10iz-3)^2=9(z-3i)^2(z-i/3)^2$$ The next step is like yours. $$I=frac4i92pi i textRes(f,fraci3)=-frac8pi9left(fracz(z-3i)^2right)'_z=fraci3=frac8pi9fraci/3+3i(i/3-3i)^3= frac8pi9frac45256=frac5pi32$$






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      $$I=int_0^2pi frac1(5-3sin(t))^2 dt=oint _=1frac1left(5-3fracz^2-12izright)^2fracdziz$$ Now here its a small mistake, note that when you get to the same denominator you should have: $$I=oint _=1frac(2iz)^2left(10iz-3(z^2-1)right)^2fracdziz=4ioint_=1fracz(3z^2-10iz-3)^2dz$$ Now here you did another small mistake $$(3z^2-10iz-3)^2=9(z-3i)^2(z-i/3)^2$$ The next step is like yours. $$I=frac4i92pi i textRes(f,fraci3)=-frac8pi9left(fracz(z-3i)^2right)'_z=fraci3=frac8pi9fraci/3+3i(i/3-3i)^3= frac8pi9frac45256=frac5pi32$$






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        $$I=int_0^2pi frac1(5-3sin(t))^2 dt=oint _=1frac1left(5-3fracz^2-12izright)^2fracdziz$$ Now here its a small mistake, note that when you get to the same denominator you should have: $$I=oint _=1frac(2iz)^2left(10iz-3(z^2-1)right)^2fracdziz=4ioint_=1fracz(3z^2-10iz-3)^2dz$$ Now here you did another small mistake $$(3z^2-10iz-3)^2=9(z-3i)^2(z-i/3)^2$$ The next step is like yours. $$I=frac4i92pi i textRes(f,fraci3)=-frac8pi9left(fracz(z-3i)^2right)'_z=fraci3=frac8pi9fraci/3+3i(i/3-3i)^3= frac8pi9frac45256=frac5pi32$$






        share|cite|improve this answer















        $$I=int_0^2pi frac1(5-3sin(t))^2 dt=oint _=1frac1left(5-3fracz^2-12izright)^2fracdziz$$ Now here its a small mistake, note that when you get to the same denominator you should have: $$I=oint _=1frac(2iz)^2left(10iz-3(z^2-1)right)^2fracdziz=4ioint_=1fracz(3z^2-10iz-3)^2dz$$ Now here you did another small mistake $$(3z^2-10iz-3)^2=9(z-3i)^2(z-i/3)^2$$ The next step is like yours. $$I=frac4i92pi i textRes(f,fraci3)=-frac8pi9left(fracz(z-3i)^2right)'_z=fraci3=frac8pi9fraci/3+3i(i/3-3i)^3= frac8pi9frac45256=frac5pi32$$







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 7 at 19:05


























        answered Aug 7 at 18:56









        Zacky

        2,2701327




        2,2701327






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2875211%2fintegrate-int-02-pi-frac15-3-sint2dt%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?