Using chain rule to find dz/dt leaving answer in terms of t

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Can anyone tell me if I have done this correctly



Using the chain rule Find $ fracdzdt $
if $ z=xy^2, x=e^-3t , y=-sin(2t) $



Leaving answer in terms of $t$




$ fracdzdt =fracpartial zpartial x cdot fracpartial xpartial t + fracpartial zpartial y cdot fracpartial ypartial t$



$ fracdzdt = (y^2 cdot -3e^-3t)+(2xy cdot -2cos(2t))$



$ fracdzdt = (sin^2(2t)cdot-3e^-3t)+(2e^-3tcdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance







share|cite|improve this question
















  • 1




    Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    – user137731
    Sep 28 '16 at 1:56











  • oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    – Buddy
    Sep 28 '16 at 1:59










  • Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
    – Buddy
    Sep 28 '16 at 2:00















up vote
1
down vote

favorite












Can anyone tell me if I have done this correctly



Using the chain rule Find $ fracdzdt $
if $ z=xy^2, x=e^-3t , y=-sin(2t) $



Leaving answer in terms of $t$




$ fracdzdt =fracpartial zpartial x cdot fracpartial xpartial t + fracpartial zpartial y cdot fracpartial ypartial t$



$ fracdzdt = (y^2 cdot -3e^-3t)+(2xy cdot -2cos(2t))$



$ fracdzdt = (sin^2(2t)cdot-3e^-3t)+(2e^-3tcdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance







share|cite|improve this question
















  • 1




    Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    – user137731
    Sep 28 '16 at 1:56











  • oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    – Buddy
    Sep 28 '16 at 1:59










  • Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
    – Buddy
    Sep 28 '16 at 2:00













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Can anyone tell me if I have done this correctly



Using the chain rule Find $ fracdzdt $
if $ z=xy^2, x=e^-3t , y=-sin(2t) $



Leaving answer in terms of $t$




$ fracdzdt =fracpartial zpartial x cdot fracpartial xpartial t + fracpartial zpartial y cdot fracpartial ypartial t$



$ fracdzdt = (y^2 cdot -3e^-3t)+(2xy cdot -2cos(2t))$



$ fracdzdt = (sin^2(2t)cdot-3e^-3t)+(2e^-3tcdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance







share|cite|improve this question












Can anyone tell me if I have done this correctly



Using the chain rule Find $ fracdzdt $
if $ z=xy^2, x=e^-3t , y=-sin(2t) $



Leaving answer in terms of $t$




$ fracdzdt =fracpartial zpartial x cdot fracpartial xpartial t + fracpartial zpartial y cdot fracpartial ypartial t$



$ fracdzdt = (y^2 cdot -3e^-3t)+(2xy cdot -2cos(2t))$



$ fracdzdt = (sin^2(2t)cdot-3e^-3t)+(2e^-3tcdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance









share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 28 '16 at 1:52









Buddy

4318




4318







  • 1




    Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    – user137731
    Sep 28 '16 at 1:56











  • oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    – Buddy
    Sep 28 '16 at 1:59










  • Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
    – Buddy
    Sep 28 '16 at 2:00













  • 1




    Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    – user137731
    Sep 28 '16 at 1:56











  • oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    – Buddy
    Sep 28 '16 at 1:59










  • Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
    – Buddy
    Sep 28 '16 at 2:00








1




1




Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
– user137731
Sep 28 '16 at 1:56





Looks fine. One little critique: When writing out the chain rule for $fracdzdt$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
– user137731
Sep 28 '16 at 1:56













oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
– Buddy
Sep 28 '16 at 1:59




oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
– Buddy
Sep 28 '16 at 1:59












Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
– Buddy
Sep 28 '16 at 2:00





Correction - should have read $ fracdzdt =fracpartial zpartial x cdot fracdxdt + fracpartial zpartial y cdot fracdydt$
– Buddy
Sep 28 '16 at 2:00











1 Answer
1






active

oldest

votes

















up vote
0
down vote













We need to find:



$$textz'(t)=fractextdtextz(t)textdt=fractextdtextdtleft(e^-3tcdotleft(-sin(2t)right)^2right)=$$
$$fractextdtextdtleft(e^-3tsin^2(2t)right)=e^-3tsin(2t)left(4cos(2t)-3sin(2t)right)$$




Using:



  1. The product rule:
    $$fractextdtextdtleft(f(t)cdot y(t)right)=f(t)cdotfractextdtextdtleft(y(t)right)+y(t)cdotfractextdtextdtleft(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

  2. $$fractextdtextdtleft(e^x(t)right)=e^x(t)cdotfractextdtextdtleft(x(t)right)=x'(t)cdot e^x(t)$$

  3. When $textC$ is a constant:
    $$fractextdtextdtleft(textCcdot q(t)right)=textCcdotfractextdtextdtleft(q(t)right)=textCcdot q'(t)$$

  4. When $textn$ is a constant, using the chain rule:
    $$fractextdtextdtleft(w(t)^textnright)=textncdot w(t)^textn-1cdotfractextdtextdtleft(w(t)right)=textncdot w(t)^textn-1cdot w'(t)$$

  5. When $textm$ is a constant, using the chain rule:
    $$fractextdtextdtleft(v(textmt)right)=fractextdtextdtleft(textmtright)cdot v'(textmt)=textmcdot v'(textmt)$$





share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1944393%2fusing-chain-rule-to-find-dz-dt-leaving-answer-in-terms-of-t%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    We need to find:



    $$textz'(t)=fractextdtextz(t)textdt=fractextdtextdtleft(e^-3tcdotleft(-sin(2t)right)^2right)=$$
    $$fractextdtextdtleft(e^-3tsin^2(2t)right)=e^-3tsin(2t)left(4cos(2t)-3sin(2t)right)$$




    Using:



    1. The product rule:
      $$fractextdtextdtleft(f(t)cdot y(t)right)=f(t)cdotfractextdtextdtleft(y(t)right)+y(t)cdotfractextdtextdtleft(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

    2. $$fractextdtextdtleft(e^x(t)right)=e^x(t)cdotfractextdtextdtleft(x(t)right)=x'(t)cdot e^x(t)$$

    3. When $textC$ is a constant:
      $$fractextdtextdtleft(textCcdot q(t)right)=textCcdotfractextdtextdtleft(q(t)right)=textCcdot q'(t)$$

    4. When $textn$ is a constant, using the chain rule:
      $$fractextdtextdtleft(w(t)^textnright)=textncdot w(t)^textn-1cdotfractextdtextdtleft(w(t)right)=textncdot w(t)^textn-1cdot w'(t)$$

    5. When $textm$ is a constant, using the chain rule:
      $$fractextdtextdtleft(v(textmt)right)=fractextdtextdtleft(textmtright)cdot v'(textmt)=textmcdot v'(textmt)$$





    share|cite|improve this answer
























      up vote
      0
      down vote













      We need to find:



      $$textz'(t)=fractextdtextz(t)textdt=fractextdtextdtleft(e^-3tcdotleft(-sin(2t)right)^2right)=$$
      $$fractextdtextdtleft(e^-3tsin^2(2t)right)=e^-3tsin(2t)left(4cos(2t)-3sin(2t)right)$$




      Using:



      1. The product rule:
        $$fractextdtextdtleft(f(t)cdot y(t)right)=f(t)cdotfractextdtextdtleft(y(t)right)+y(t)cdotfractextdtextdtleft(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

      2. $$fractextdtextdtleft(e^x(t)right)=e^x(t)cdotfractextdtextdtleft(x(t)right)=x'(t)cdot e^x(t)$$

      3. When $textC$ is a constant:
        $$fractextdtextdtleft(textCcdot q(t)right)=textCcdotfractextdtextdtleft(q(t)right)=textCcdot q'(t)$$

      4. When $textn$ is a constant, using the chain rule:
        $$fractextdtextdtleft(w(t)^textnright)=textncdot w(t)^textn-1cdotfractextdtextdtleft(w(t)right)=textncdot w(t)^textn-1cdot w'(t)$$

      5. When $textm$ is a constant, using the chain rule:
        $$fractextdtextdtleft(v(textmt)right)=fractextdtextdtleft(textmtright)cdot v'(textmt)=textmcdot v'(textmt)$$





      share|cite|improve this answer






















        up vote
        0
        down vote










        up vote
        0
        down vote









        We need to find:



        $$textz'(t)=fractextdtextz(t)textdt=fractextdtextdtleft(e^-3tcdotleft(-sin(2t)right)^2right)=$$
        $$fractextdtextdtleft(e^-3tsin^2(2t)right)=e^-3tsin(2t)left(4cos(2t)-3sin(2t)right)$$




        Using:



        1. The product rule:
          $$fractextdtextdtleft(f(t)cdot y(t)right)=f(t)cdotfractextdtextdtleft(y(t)right)+y(t)cdotfractextdtextdtleft(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

        2. $$fractextdtextdtleft(e^x(t)right)=e^x(t)cdotfractextdtextdtleft(x(t)right)=x'(t)cdot e^x(t)$$

        3. When $textC$ is a constant:
          $$fractextdtextdtleft(textCcdot q(t)right)=textCcdotfractextdtextdtleft(q(t)right)=textCcdot q'(t)$$

        4. When $textn$ is a constant, using the chain rule:
          $$fractextdtextdtleft(w(t)^textnright)=textncdot w(t)^textn-1cdotfractextdtextdtleft(w(t)right)=textncdot w(t)^textn-1cdot w'(t)$$

        5. When $textm$ is a constant, using the chain rule:
          $$fractextdtextdtleft(v(textmt)right)=fractextdtextdtleft(textmtright)cdot v'(textmt)=textmcdot v'(textmt)$$





        share|cite|improve this answer












        We need to find:



        $$textz'(t)=fractextdtextz(t)textdt=fractextdtextdtleft(e^-3tcdotleft(-sin(2t)right)^2right)=$$
        $$fractextdtextdtleft(e^-3tsin^2(2t)right)=e^-3tsin(2t)left(4cos(2t)-3sin(2t)right)$$




        Using:



        1. The product rule:
          $$fractextdtextdtleft(f(t)cdot y(t)right)=f(t)cdotfractextdtextdtleft(y(t)right)+y(t)cdotfractextdtextdtleft(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

        2. $$fractextdtextdtleft(e^x(t)right)=e^x(t)cdotfractextdtextdtleft(x(t)right)=x'(t)cdot e^x(t)$$

        3. When $textC$ is a constant:
          $$fractextdtextdtleft(textCcdot q(t)right)=textCcdotfractextdtextdtleft(q(t)right)=textCcdot q'(t)$$

        4. When $textn$ is a constant, using the chain rule:
          $$fractextdtextdtleft(w(t)^textnright)=textncdot w(t)^textn-1cdotfractextdtextdtleft(w(t)right)=textncdot w(t)^textn-1cdot w'(t)$$

        5. When $textm$ is a constant, using the chain rule:
          $$fractextdtextdtleft(v(textmt)right)=fractextdtextdtleft(textmtright)cdot v'(textmt)=textmcdot v'(textmt)$$






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 28 '16 at 19:54









        Jan

        21.6k31239




        21.6k31239



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1944393%2fusing-chain-rule-to-find-dz-dt-leaving-answer-in-terms-of-t%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?