is there any way to simplify my final expression?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Given $f(x,y) = (1+y^2)sin ^2 x $ , $ x= tan^-1 u $ , $y = sin^-1 u$
Find $df/du$
$fracpartialpartial x = 2(1+y^2) sin x cos x $
$fracpartialpartial y = 2y sin^2 x$
$fracdxdu = frac11+x^2 $
$fracdydu = frac1sqrt1-x^2$
$fracdfdu = fracpartial fpartial x cdot fracdxdu + fracpartial fpartial y cdot fracdydu $
$fracdfdu = 2(1+ (sin^-1 u)^2 ) sin (tan^-1 u) cos (tan^-1 u) cdot frac11+ (tan^-1 u)^2 + (2(sin^-1 sin^2 (tan^-1 u) cdot frac1sqrt1- (tan^-1)^2 $
Just thought that this is a weird expression and thus cannot be simplified. Am I right ?
partial-derivative
add a comment |Â
up vote
0
down vote
favorite
Given $f(x,y) = (1+y^2)sin ^2 x $ , $ x= tan^-1 u $ , $y = sin^-1 u$
Find $df/du$
$fracpartialpartial x = 2(1+y^2) sin x cos x $
$fracpartialpartial y = 2y sin^2 x$
$fracdxdu = frac11+x^2 $
$fracdydu = frac1sqrt1-x^2$
$fracdfdu = fracpartial fpartial x cdot fracdxdu + fracpartial fpartial y cdot fracdydu $
$fracdfdu = 2(1+ (sin^-1 u)^2 ) sin (tan^-1 u) cos (tan^-1 u) cdot frac11+ (tan^-1 u)^2 + (2(sin^-1 sin^2 (tan^-1 u) cdot frac1sqrt1- (tan^-1)^2 $
Just thought that this is a weird expression and thus cannot be simplified. Am I right ?
partial-derivative
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given $f(x,y) = (1+y^2)sin ^2 x $ , $ x= tan^-1 u $ , $y = sin^-1 u$
Find $df/du$
$fracpartialpartial x = 2(1+y^2) sin x cos x $
$fracpartialpartial y = 2y sin^2 x$
$fracdxdu = frac11+x^2 $
$fracdydu = frac1sqrt1-x^2$
$fracdfdu = fracpartial fpartial x cdot fracdxdu + fracpartial fpartial y cdot fracdydu $
$fracdfdu = 2(1+ (sin^-1 u)^2 ) sin (tan^-1 u) cos (tan^-1 u) cdot frac11+ (tan^-1 u)^2 + (2(sin^-1 sin^2 (tan^-1 u) cdot frac1sqrt1- (tan^-1)^2 $
Just thought that this is a weird expression and thus cannot be simplified. Am I right ?
partial-derivative
Given $f(x,y) = (1+y^2)sin ^2 x $ , $ x= tan^-1 u $ , $y = sin^-1 u$
Find $df/du$
$fracpartialpartial x = 2(1+y^2) sin x cos x $
$fracpartialpartial y = 2y sin^2 x$
$fracdxdu = frac11+x^2 $
$fracdydu = frac1sqrt1-x^2$
$fracdfdu = fracpartial fpartial x cdot fracdxdu + fracpartial fpartial y cdot fracdydu $
$fracdfdu = 2(1+ (sin^-1 u)^2 ) sin (tan^-1 u) cos (tan^-1 u) cdot frac11+ (tan^-1 u)^2 + (2(sin^-1 sin^2 (tan^-1 u) cdot frac1sqrt1- (tan^-1)^2 $
Just thought that this is a weird expression and thus cannot be simplified. Am I right ?
partial-derivative
edited Aug 28 at 14:47
David C. Ullrich
55.6k43787
55.6k43787
asked Aug 28 at 14:16
user185692
1536
1536
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28
add a comment |Â
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
One thing you could do is you know that $$1+frac1tan^2alpha=frac1sin^2alpha$$
Put $alpha = tan^-1u$ and youll get:
$$sin^2(tan^-1u)=fracu^21+u^2$$
Take the square root of this, and you'll have another expression of yours.
All of this is derived playing with the equation:
$$sin^2alpha+cos^2alpha=1$$
add a comment |Â
up vote
0
down vote
Alternatively:
$$f(u)=(1+arcsin^2 u)cdot sin^2 (arctan u)\
f'(u)=2arcsin ucdot frac1sqrt1-u^2cdot sin^2 (arctan u)+(1+arcsin^2u)cdot sin(2arctan u)cdot frac11+u^2=\
2arcsin ucdot frac1sqrt1-u^2cdot fracu^21+u^2+(1+arcsin^2u)cdot frac2u1+u^2cdot frac11+u^2=\
frac2u^2arcsin usqrt1-u^2cdot (1+u^2)+frac2u(1+arcsin^2u)(1+u^2)^2.$$
See WA result.
Note:
$$sin^2(arctan u)=1-cos^2(arctan u)=1-frac11+tan^2(arctan u)=1-frac11+u^2=fracu^21+u^2;\
sin(arctan u)=fracusqrt1+u^2;\
cos^2(arctan u)=frac11+tan^2(arctan u)=frac11+u^2;\
cos(arctan u)=frac1sqrt1+u^2;\
sin(2arctan u)=2sin(arctan u)cos (arctan u)=frac2u1+u^2.$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
One thing you could do is you know that $$1+frac1tan^2alpha=frac1sin^2alpha$$
Put $alpha = tan^-1u$ and youll get:
$$sin^2(tan^-1u)=fracu^21+u^2$$
Take the square root of this, and you'll have another expression of yours.
All of this is derived playing with the equation:
$$sin^2alpha+cos^2alpha=1$$
add a comment |Â
up vote
0
down vote
One thing you could do is you know that $$1+frac1tan^2alpha=frac1sin^2alpha$$
Put $alpha = tan^-1u$ and youll get:
$$sin^2(tan^-1u)=fracu^21+u^2$$
Take the square root of this, and you'll have another expression of yours.
All of this is derived playing with the equation:
$$sin^2alpha+cos^2alpha=1$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
One thing you could do is you know that $$1+frac1tan^2alpha=frac1sin^2alpha$$
Put $alpha = tan^-1u$ and youll get:
$$sin^2(tan^-1u)=fracu^21+u^2$$
Take the square root of this, and you'll have another expression of yours.
All of this is derived playing with the equation:
$$sin^2alpha+cos^2alpha=1$$
One thing you could do is you know that $$1+frac1tan^2alpha=frac1sin^2alpha$$
Put $alpha = tan^-1u$ and youll get:
$$sin^2(tan^-1u)=fracu^21+u^2$$
Take the square root of this, and you'll have another expression of yours.
All of this is derived playing with the equation:
$$sin^2alpha+cos^2alpha=1$$
answered Aug 28 at 14:28
HBR
1,69349
1,69349
add a comment |Â
add a comment |Â
up vote
0
down vote
Alternatively:
$$f(u)=(1+arcsin^2 u)cdot sin^2 (arctan u)\
f'(u)=2arcsin ucdot frac1sqrt1-u^2cdot sin^2 (arctan u)+(1+arcsin^2u)cdot sin(2arctan u)cdot frac11+u^2=\
2arcsin ucdot frac1sqrt1-u^2cdot fracu^21+u^2+(1+arcsin^2u)cdot frac2u1+u^2cdot frac11+u^2=\
frac2u^2arcsin usqrt1-u^2cdot (1+u^2)+frac2u(1+arcsin^2u)(1+u^2)^2.$$
See WA result.
Note:
$$sin^2(arctan u)=1-cos^2(arctan u)=1-frac11+tan^2(arctan u)=1-frac11+u^2=fracu^21+u^2;\
sin(arctan u)=fracusqrt1+u^2;\
cos^2(arctan u)=frac11+tan^2(arctan u)=frac11+u^2;\
cos(arctan u)=frac1sqrt1+u^2;\
sin(2arctan u)=2sin(arctan u)cos (arctan u)=frac2u1+u^2.$$
add a comment |Â
up vote
0
down vote
Alternatively:
$$f(u)=(1+arcsin^2 u)cdot sin^2 (arctan u)\
f'(u)=2arcsin ucdot frac1sqrt1-u^2cdot sin^2 (arctan u)+(1+arcsin^2u)cdot sin(2arctan u)cdot frac11+u^2=\
2arcsin ucdot frac1sqrt1-u^2cdot fracu^21+u^2+(1+arcsin^2u)cdot frac2u1+u^2cdot frac11+u^2=\
frac2u^2arcsin usqrt1-u^2cdot (1+u^2)+frac2u(1+arcsin^2u)(1+u^2)^2.$$
See WA result.
Note:
$$sin^2(arctan u)=1-cos^2(arctan u)=1-frac11+tan^2(arctan u)=1-frac11+u^2=fracu^21+u^2;\
sin(arctan u)=fracusqrt1+u^2;\
cos^2(arctan u)=frac11+tan^2(arctan u)=frac11+u^2;\
cos(arctan u)=frac1sqrt1+u^2;\
sin(2arctan u)=2sin(arctan u)cos (arctan u)=frac2u1+u^2.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Alternatively:
$$f(u)=(1+arcsin^2 u)cdot sin^2 (arctan u)\
f'(u)=2arcsin ucdot frac1sqrt1-u^2cdot sin^2 (arctan u)+(1+arcsin^2u)cdot sin(2arctan u)cdot frac11+u^2=\
2arcsin ucdot frac1sqrt1-u^2cdot fracu^21+u^2+(1+arcsin^2u)cdot frac2u1+u^2cdot frac11+u^2=\
frac2u^2arcsin usqrt1-u^2cdot (1+u^2)+frac2u(1+arcsin^2u)(1+u^2)^2.$$
See WA result.
Note:
$$sin^2(arctan u)=1-cos^2(arctan u)=1-frac11+tan^2(arctan u)=1-frac11+u^2=fracu^21+u^2;\
sin(arctan u)=fracusqrt1+u^2;\
cos^2(arctan u)=frac11+tan^2(arctan u)=frac11+u^2;\
cos(arctan u)=frac1sqrt1+u^2;\
sin(2arctan u)=2sin(arctan u)cos (arctan u)=frac2u1+u^2.$$
Alternatively:
$$f(u)=(1+arcsin^2 u)cdot sin^2 (arctan u)\
f'(u)=2arcsin ucdot frac1sqrt1-u^2cdot sin^2 (arctan u)+(1+arcsin^2u)cdot sin(2arctan u)cdot frac11+u^2=\
2arcsin ucdot frac1sqrt1-u^2cdot fracu^21+u^2+(1+arcsin^2u)cdot frac2u1+u^2cdot frac11+u^2=\
frac2u^2arcsin usqrt1-u^2cdot (1+u^2)+frac2u(1+arcsin^2u)(1+u^2)^2.$$
See WA result.
Note:
$$sin^2(arctan u)=1-cos^2(arctan u)=1-frac11+tan^2(arctan u)=1-frac11+u^2=fracu^21+u^2;\
sin(arctan u)=fracusqrt1+u^2;\
cos^2(arctan u)=frac11+tan^2(arctan u)=frac11+u^2;\
cos(arctan u)=frac1sqrt1+u^2;\
sin(2arctan u)=2sin(arctan u)cos (arctan u)=frac2u1+u^2.$$
answered Aug 28 at 16:02
farruhota
15.1k2734
15.1k2734
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2897315%2fis-there-any-way-to-simplify-my-final-expression%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You're missing a very important parenthesis in the last line - the one for the $arcsin$. Generally, functions of the type $arcsin(tan)$ or $cos(arctan)$ can often be simplified. Draw triangles, and use the Pythagorean Theorem.
â Adrian Keister
Aug 28 at 14:28