Proof of the fundamental theorem of line integrals

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













Suppose $C$ is a smooth curve given by $vecr(t)$, $a leq t leq b$. Also suppose that $Phi$ is a function whose gradient vector, $nabla Phi=f$, is continuous on $C$. Then
$$
int_C f cdot ,mathrmdvecr
= Phi(vecr(b))-Phi(vecr(a)).
$$




To prove this, we start by rewriting the integral using the parameterization of $C$. So
$$
int_C f cdot ,mathrmdvecr
= int_a^bf(vecr(t)) cdot vecr^,prime(t) , mathrmdt
$$
Since $Phi$ is the potential function of $f$,
$$
int_a^b f(vecr(t)) cdot vecr^,prime(t) , mathrmdt
= int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt,
$$
and with the substitution $omega=r(t)$, $mathrmdomega=r^prime(t),mathrmdt$,
$$
int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
= int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
$$
and since $omega_1=vecr(a)$ and $omega_2=vecr(b)$, the fundamental theorem of calculus gives
$$
int_C f cdot mathrmdvecr
= Phi(omega_2) - Phi(omega_1)
= Phi(vecr(b)) - Phi(vecr(a)). quadBox
$$
Is this proof complete? Can you explain why the equality
$$
int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
= int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
$$
holds?







share|cite|improve this question


























    up vote
    0
    down vote

    favorite













    Suppose $C$ is a smooth curve given by $vecr(t)$, $a leq t leq b$. Also suppose that $Phi$ is a function whose gradient vector, $nabla Phi=f$, is continuous on $C$. Then
    $$
    int_C f cdot ,mathrmdvecr
    = Phi(vecr(b))-Phi(vecr(a)).
    $$




    To prove this, we start by rewriting the integral using the parameterization of $C$. So
    $$
    int_C f cdot ,mathrmdvecr
    = int_a^bf(vecr(t)) cdot vecr^,prime(t) , mathrmdt
    $$
    Since $Phi$ is the potential function of $f$,
    $$
    int_a^b f(vecr(t)) cdot vecr^,prime(t) , mathrmdt
    = int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt,
    $$
    and with the substitution $omega=r(t)$, $mathrmdomega=r^prime(t),mathrmdt$,
    $$
    int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
    = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
    $$
    and since $omega_1=vecr(a)$ and $omega_2=vecr(b)$, the fundamental theorem of calculus gives
    $$
    int_C f cdot mathrmdvecr
    = Phi(omega_2) - Phi(omega_1)
    = Phi(vecr(b)) - Phi(vecr(a)). quadBox
    $$
    Is this proof complete? Can you explain why the equality
    $$
    int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
    = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
    $$
    holds?







    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite












      Suppose $C$ is a smooth curve given by $vecr(t)$, $a leq t leq b$. Also suppose that $Phi$ is a function whose gradient vector, $nabla Phi=f$, is continuous on $C$. Then
      $$
      int_C f cdot ,mathrmdvecr
      = Phi(vecr(b))-Phi(vecr(a)).
      $$




      To prove this, we start by rewriting the integral using the parameterization of $C$. So
      $$
      int_C f cdot ,mathrmdvecr
      = int_a^bf(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      $$
      Since $Phi$ is the potential function of $f$,
      $$
      int_a^b f(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt,
      $$
      and with the substitution $omega=r(t)$, $mathrmdomega=r^prime(t),mathrmdt$,
      $$
      int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
      $$
      and since $omega_1=vecr(a)$ and $omega_2=vecr(b)$, the fundamental theorem of calculus gives
      $$
      int_C f cdot mathrmdvecr
      = Phi(omega_2) - Phi(omega_1)
      = Phi(vecr(b)) - Phi(vecr(a)). quadBox
      $$
      Is this proof complete? Can you explain why the equality
      $$
      int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
      $$
      holds?







      share|cite|improve this question















      Suppose $C$ is a smooth curve given by $vecr(t)$, $a leq t leq b$. Also suppose that $Phi$ is a function whose gradient vector, $nabla Phi=f$, is continuous on $C$. Then
      $$
      int_C f cdot ,mathrmdvecr
      = Phi(vecr(b))-Phi(vecr(a)).
      $$




      To prove this, we start by rewriting the integral using the parameterization of $C$. So
      $$
      int_C f cdot ,mathrmdvecr
      = int_a^bf(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      $$
      Since $Phi$ is the potential function of $f$,
      $$
      int_a^b f(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt,
      $$
      and with the substitution $omega=r(t)$, $mathrmdomega=r^prime(t),mathrmdt$,
      $$
      int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
      $$
      and since $omega_1=vecr(a)$ and $omega_2=vecr(b)$, the fundamental theorem of calculus gives
      $$
      int_C f cdot mathrmdvecr
      = Phi(omega_2) - Phi(omega_1)
      = Phi(vecr(b)) - Phi(vecr(a)). quadBox
      $$
      Is this proof complete? Can you explain why the equality
      $$
      int_a^b nabla Phi(vecr(t)) cdot vecr^,prime(t) , mathrmdt
      = int_omega_1^omega_2bigl[Phi(omega)bigr]',mathrmdomega,
      $$
      holds?









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 29 at 15:33

























      asked Aug 29 at 10:47









      Andrewtz98

      1757




      1757




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          All you need is the chain rule and the definition of scalar product. Setting $r(t)=(x_1(t),dots, x_n(t))$ we have
          $$fracddtPhi(x_1(t),dots,x_n(t))=
          sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt.
          $$
          Now $nabla Phi = left(fracpartial Phipartial x_1,dots fracpartial Phipartial x_nright)$ and $r'(t)=(x_1'(t),dots, x_n'(t))$ so
          $$nablaPhi cdot r'(t) = sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt = [Phi(r(t))]'
          $$






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898233%2fproof-of-the-fundamental-theorem-of-line-integrals%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            All you need is the chain rule and the definition of scalar product. Setting $r(t)=(x_1(t),dots, x_n(t))$ we have
            $$fracddtPhi(x_1(t),dots,x_n(t))=
            sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt.
            $$
            Now $nabla Phi = left(fracpartial Phipartial x_1,dots fracpartial Phipartial x_nright)$ and $r'(t)=(x_1'(t),dots, x_n'(t))$ so
            $$nablaPhi cdot r'(t) = sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt = [Phi(r(t))]'
            $$






            share|cite|improve this answer
























              up vote
              1
              down vote



              accepted










              All you need is the chain rule and the definition of scalar product. Setting $r(t)=(x_1(t),dots, x_n(t))$ we have
              $$fracddtPhi(x_1(t),dots,x_n(t))=
              sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt.
              $$
              Now $nabla Phi = left(fracpartial Phipartial x_1,dots fracpartial Phipartial x_nright)$ and $r'(t)=(x_1'(t),dots, x_n'(t))$ so
              $$nablaPhi cdot r'(t) = sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt = [Phi(r(t))]'
              $$






              share|cite|improve this answer






















                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                All you need is the chain rule and the definition of scalar product. Setting $r(t)=(x_1(t),dots, x_n(t))$ we have
                $$fracddtPhi(x_1(t),dots,x_n(t))=
                sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt.
                $$
                Now $nabla Phi = left(fracpartial Phipartial x_1,dots fracpartial Phipartial x_nright)$ and $r'(t)=(x_1'(t),dots, x_n'(t))$ so
                $$nablaPhi cdot r'(t) = sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt = [Phi(r(t))]'
                $$






                share|cite|improve this answer












                All you need is the chain rule and the definition of scalar product. Setting $r(t)=(x_1(t),dots, x_n(t))$ we have
                $$fracddtPhi(x_1(t),dots,x_n(t))=
                sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt.
                $$
                Now $nabla Phi = left(fracpartial Phipartial x_1,dots fracpartial Phipartial x_nright)$ and $r'(t)=(x_1'(t),dots, x_n'(t))$ so
                $$nablaPhi cdot r'(t) = sum_j=1^n fracpartial Phipartial x_j fracd x_j(t)dt = [Phi(r(t))]'
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 29 at 15:03









                Kusma

                3,335218




                3,335218



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898233%2fproof-of-the-fundamental-theorem-of-line-integrals%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?