Measure of a set invariant under translations with rational numbers
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.
real-analysis measure-theory lebesgue-measure
add a comment |Â
up vote
4
down vote
favorite
Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.
real-analysis measure-theory lebesgue-measure
1
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.
real-analysis measure-theory lebesgue-measure
Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.
real-analysis measure-theory lebesgue-measure
edited Aug 29 at 6:55
A. Pongrácz
4,430725
4,430725
asked Aug 29 at 6:23
Leonardo
1035
1035
1
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39
add a comment |Â
1
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39
1
1
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$
$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$
$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$
$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$
$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.
add a comment |Â
up vote
2
down vote
Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$
$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$
$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$
$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$
$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.
Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$
$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$
$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.
edited Aug 29 at 7:35
answered Aug 29 at 6:46
Kavi Rama Murthy
25k31234
25k31234
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898005%2fmeasure-of-a-set-invariant-under-translations-with-rational-numbers%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Your thoughts on this question?
â Ã°ÃÂÃÂþý òÃÂûûð þûþàüÃÂûûñÃÂÃÂó
Aug 29 at 6:33
One question: Do you mean if $xin E$ then $x+dfrac1nin E$
â Mostafa Ayaz
Aug 29 at 6:39