Measure of a set invariant under translations with rational numbers

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.







share|cite|improve this question


















  • 1




    Your thoughts on this question?
    – Ð°ÑÑ‚он вілла олоф мэллбэрг
    Aug 29 at 6:33










  • One question: Do you mean if $xin E$ then $x+dfrac1nin E$
    – Mostafa Ayaz
    Aug 29 at 6:39














up vote
4
down vote

favorite












Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.







share|cite|improve this question


















  • 1




    Your thoughts on this question?
    – Ð°ÑÑ‚он вілла олоф мэллбэрг
    Aug 29 at 6:33










  • One question: Do you mean if $xin E$ then $x+dfrac1nin E$
    – Mostafa Ayaz
    Aug 29 at 6:39












up vote
4
down vote

favorite









up vote
4
down vote

favorite











Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.







share|cite|improve this question














Suppose $EsubsetmathbbR$ is measurable and $E=E+frac1n$ for every natural number $ngeq1$. Show that either $m(E)=0$ or $m(mathbbRsetminus E)=0$.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 29 at 6:55









A. Pongrácz

4,430725




4,430725










asked Aug 29 at 6:23









Leonardo

1035




1035







  • 1




    Your thoughts on this question?
    – Ð°ÑÑ‚он вілла олоф мэллбэрг
    Aug 29 at 6:33










  • One question: Do you mean if $xin E$ then $x+dfrac1nin E$
    – Mostafa Ayaz
    Aug 29 at 6:39












  • 1




    Your thoughts on this question?
    – Ð°ÑÑ‚он вілла олоф мэллбэрг
    Aug 29 at 6:33










  • One question: Do you mean if $xin E$ then $x+dfrac1nin E$
    – Mostafa Ayaz
    Aug 29 at 6:39







1




1




Your thoughts on this question?
– Ð°ÑÑ‚он вілла олоф мэллбэрг
Aug 29 at 6:33




Your thoughts on this question?
– Ð°ÑÑ‚он вілла олоф мэллбэрг
Aug 29 at 6:33












One question: Do you mean if $xin E$ then $x+dfrac1nin E$
– Mostafa Ayaz
Aug 29 at 6:39




One question: Do you mean if $xin E$ then $x+dfrac1nin E$
– Mostafa Ayaz
Aug 29 at 6:39










1 Answer
1






active

oldest

votes

















up vote
2
down vote













Let $m(E)>0,ain
%TCIMACROU211d %
%BeginExpansion
mathbbR
%EndExpansion
$ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$



$$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
frac1n)=m(Ecap (x-frac1n,y-frac1n])$$



$=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
absolutely continuous. Hence it is differentiable almost everywhere and
using above equation we conclude that its derivative is a constant $c$ a.e..
Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
)2delta $$ and almost all points of $E$ have metric density $1$ we see
that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
(x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
which clearly implies that $m(E^c)=0$.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898005%2fmeasure-of-a-set-invariant-under-translations-with-rational-numbers%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    Let $m(E)>0,ain
    %TCIMACROU211d %
    %BeginExpansion
    mathbbR
    %EndExpansion
    $ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
    f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$



    $$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
    frac1n)=m(Ecap (x-frac1n,y-frac1n])$$



    $=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
    1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
    leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
    absolutely continuous. Hence it is differentiable almost everywhere and
    using above equation we conclude that its derivative is a constant $c$ a.e..
    Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
    )2delta $$ and almost all points of $E$ have metric density $1$ we see
    that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
    gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
    (x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
    which clearly implies that $m(E^c)=0$.






    share|cite|improve this answer


























      up vote
      2
      down vote













      Let $m(E)>0,ain
      %TCIMACROU211d %
      %BeginExpansion
      mathbbR
      %EndExpansion
      $ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
      f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$



      $$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
      frac1n)=m(Ecap (x-frac1n,y-frac1n])$$



      $=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
      1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
      leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
      absolutely continuous. Hence it is differentiable almost everywhere and
      using above equation we conclude that its derivative is a constant $c$ a.e..
      Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
      )2delta $$ and almost all points of $E$ have metric density $1$ we see
      that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
      gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
      (x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
      which clearly implies that $m(E^c)=0$.






      share|cite|improve this answer
























        up vote
        2
        down vote










        up vote
        2
        down vote









        Let $m(E)>0,ain
        %TCIMACROU211d %
        %BeginExpansion
        mathbbR
        %EndExpansion
        $ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
        f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$



        $$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
        frac1n)=m(Ecap (x-frac1n,y-frac1n])$$



        $=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
        1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
        leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
        absolutely continuous. Hence it is differentiable almost everywhere and
        using above equation we conclude that its derivative is a constant $c$ a.e..
        Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
        )2delta $$ and almost all points of $E$ have metric density $1$ we see
        that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
        gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
        (x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
        which clearly implies that $m(E^c)=0$.






        share|cite|improve this answer














        Let $m(E)>0,ain
        %TCIMACROU211d %
        %BeginExpansion
        mathbbR
        %EndExpansion
        $ and $f(x)=m(Ecap lbrack a,x])$ for $aleq x<infty $. If $a<x<y$ then $$
        f(y+frac1n)-f(x+frac1n)=m(Ecap (x+frac1n,y+frac1n])$$



        $$=m(E-frac1ncap (x,y])=m(Ecap (x,y])$$ and $$f(y-frac1n)-f(x-%
        frac1n)=m(Ecap (x-frac1n,y-frac1n])$$



        $=m(E+frac1ncap (x,y])=m(Ecap (x,y])$. It follows that $$f(y+frac%
        1n)-f(x+frac1n)=f(y-frac1n)-f(x-frac1n)$$ . Note that $$%
        leftvert f(y)-f(x)rightvert leq leftvert y-xrightvert $$ so $f$ is
        absolutely continuous. Hence it is differentiable almost everywhere and
        using above equation we conclude that its derivative is a constant $c$ a.e..
        Since $$fracm(x-delta ,x+delta )2delta =fracf(x+delta )-f(x-delta
        )2delta $$ and almost all points of $E$ have metric density $1$ we see
        that $c=1$ Thus $f(y)-f(x)=int_x^yf^prime (t)dt=y-x$. This
        gives $f(y)=f(a)+y-a$ $forall x>a$. Thus $f(y)-f(x)=y-x$ or $m(Ecap
        (x,y])=m((x,y])$ for $a<x<y$. This gives $m(E^ccap (x,y])=0$ for $a<x<y$
        which clearly implies that $m(E^c)=0$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 29 at 7:35

























        answered Aug 29 at 6:46









        Kavi Rama Murthy

        25k31234




        25k31234



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898005%2fmeasure-of-a-set-invariant-under-translations-with-rational-numbers%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?