Does $ (sqrt[n]n)^p to 1 textas n to infty textif p < 1 $?
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
We know that $ sqrt[n]n to 1 textas n to infty $.
We can show that $ (sqrt[n]n)^p to 1 textas n to infty textif p geq 1 $
My question is-
Does $ (sqrt[n]n)^p to 1 textas n to infty textif p < 1 $ ?
sequences-and-series limits
add a comment |Â
up vote
2
down vote
favorite
We know that $ sqrt[n]n to 1 textas n to infty $.
We can show that $ (sqrt[n]n)^p to 1 textas n to infty textif p geq 1 $
My question is-
Does $ (sqrt[n]n)^p to 1 textas n to infty textif p < 1 $ ?
sequences-and-series limits
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
We know that $ sqrt[n]n to 1 textas n to infty $.
We can show that $ (sqrt[n]n)^p to 1 textas n to infty textif p geq 1 $
My question is-
Does $ (sqrt[n]n)^p to 1 textas n to infty textif p < 1 $ ?
sequences-and-series limits
We know that $ sqrt[n]n to 1 textas n to infty $.
We can show that $ (sqrt[n]n)^p to 1 textas n to infty textif p geq 1 $
My question is-
Does $ (sqrt[n]n)^p to 1 textas n to infty textif p < 1 $ ?
sequences-and-series limits
edited Aug 29 at 8:47
gimusi
71.2k73786
71.2k73786
asked Aug 29 at 8:23
yourmath
1,8111617
1,8111617
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51
add a comment |Â
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
For $p=0$
$$(sqrt[n]n)^p=(sqrt[n]n)^0=1$$
For $pneq 0$
$$(sqrt[n]n)^p=e^frac plog nnto e^0=1$$
add a comment |Â
up vote
4
down vote
The power function $x^p$ is continuous, so that
$$lim_ntoinftyleft(sqrt[n]nright)^p=left(lim_ntoinftysqrt[n]nright)^p$$
and $1^p=1$ for all $p$.
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
add a comment |Â
up vote
4
down vote
Yes, for all $p in mathbb R$. Let $a_n = sqrt[n]n$, then $a_n to 1$ as you said, and by definition of continuity of $x mapsto x^p$, $a_n^p to 1^p=1$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
For $p=0$
$$(sqrt[n]n)^p=(sqrt[n]n)^0=1$$
For $pneq 0$
$$(sqrt[n]n)^p=e^frac plog nnto e^0=1$$
add a comment |Â
up vote
2
down vote
accepted
For $p=0$
$$(sqrt[n]n)^p=(sqrt[n]n)^0=1$$
For $pneq 0$
$$(sqrt[n]n)^p=e^frac plog nnto e^0=1$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
For $p=0$
$$(sqrt[n]n)^p=(sqrt[n]n)^0=1$$
For $pneq 0$
$$(sqrt[n]n)^p=e^frac plog nnto e^0=1$$
For $p=0$
$$(sqrt[n]n)^p=(sqrt[n]n)^0=1$$
For $pneq 0$
$$(sqrt[n]n)^p=e^frac plog nnto e^0=1$$
edited Aug 29 at 8:50
answered Aug 29 at 8:43
gimusi
71.2k73786
71.2k73786
add a comment |Â
add a comment |Â
up vote
4
down vote
The power function $x^p$ is continuous, so that
$$lim_ntoinftyleft(sqrt[n]nright)^p=left(lim_ntoinftysqrt[n]nright)^p$$
and $1^p=1$ for all $p$.
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
add a comment |Â
up vote
4
down vote
The power function $x^p$ is continuous, so that
$$lim_ntoinftyleft(sqrt[n]nright)^p=left(lim_ntoinftysqrt[n]nright)^p$$
and $1^p=1$ for all $p$.
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
add a comment |Â
up vote
4
down vote
up vote
4
down vote
The power function $x^p$ is continuous, so that
$$lim_ntoinftyleft(sqrt[n]nright)^p=left(lim_ntoinftysqrt[n]nright)^p$$
and $1^p=1$ for all $p$.
The power function $x^p$ is continuous, so that
$$lim_ntoinftyleft(sqrt[n]nright)^p=left(lim_ntoinftysqrt[n]nright)^p$$
and $1^p=1$ for all $p$.
answered Aug 29 at 8:29
Yves Daoust
114k665208
114k665208
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
add a comment |Â
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
1
1
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
for $ p<0 $ also
â yourmath
Aug 29 at 8:30
2
2
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
@yourmath: "all $p$" indeed includes the negatives.
â Yves Daoust
Aug 29 at 8:31
add a comment |Â
up vote
4
down vote
Yes, for all $p in mathbb R$. Let $a_n = sqrt[n]n$, then $a_n to 1$ as you said, and by definition of continuity of $x mapsto x^p$, $a_n^p to 1^p=1$.
add a comment |Â
up vote
4
down vote
Yes, for all $p in mathbb R$. Let $a_n = sqrt[n]n$, then $a_n to 1$ as you said, and by definition of continuity of $x mapsto x^p$, $a_n^p to 1^p=1$.
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Yes, for all $p in mathbb R$. Let $a_n = sqrt[n]n$, then $a_n to 1$ as you said, and by definition of continuity of $x mapsto x^p$, $a_n^p to 1^p=1$.
Yes, for all $p in mathbb R$. Let $a_n = sqrt[n]n$, then $a_n to 1$ as you said, and by definition of continuity of $x mapsto x^p$, $a_n^p to 1^p=1$.
answered Aug 29 at 8:30
barto
13.4k32581
13.4k32581
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2898094%2fdoes-sqrtnnp-to-1-textas-n-to-infty-textif-p%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Why do you doubt the result when $p<1$?
â Paramanand Singh
Aug 29 at 10:51