proving the laplacian of a vector in cylindrical coordnates

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2












I am proving the following identity for the laplacian of a vector $vecv=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2+frac1rfracpartial v_rpartial r-frac2r^2fracpartial v_thetapartial theta -fracv_rr^2right )vece_r \ + left (fracpartial^2 v_thetapartial r^2+frac1r^2fracpartial^2 v_thetapartial theta^2+fracpartial^2 v_thetapartial z^2+frac1rfracpartial v_thetapartial r+frac2r^2fracpartial v_rpartial theta-fracv_thetar^2 right )vece_theta \ left( fracpartial^2 v_zpartial r^2+frac1r^2fracpartial^2 v_zpartial theta^2+frac1rfracpartial v_zpartial r+fracpartial^2 v_zpartial z^2 right)vece_z$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 $$. So to prove the desired identity, $$nabla^2 vecv=left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r+v_theta vece_theta+v_zvece_z) \
= left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_thetavece_theta)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_zvece_z)$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1rfracpartial v_rpartial r+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2-fracv_rr^2 right)vece_r \
+left( fracpartial^2 v_thetapartial r^2+frac1rfracpartial v_thetapartial r+frac1r^2fracpartial^2 v_thetapartial theta^2-fracv_thetar^2+fracpartial^2 v_thetapartial z^2 right)vece_theta \
left( fracpartial^2 v_zpartial r^2+frac1rfracpartial v_zpartial r+frac1r^2fracpartial^2 v_zpartial theta^2+fracpartial^2 v_zpartial z^2 right)vece_z$$ which is not the same with the identity. I am confused how the $-frac2r^2fracpartial v_thetapartial theta$ and $frac2r^2fracpartial v_rpartial theta$ appeared in the $vece_r$ and $vece_theta$ components, respectively. Where did I go wrong? Need help...thanks







share|cite|improve this question
















  • 2




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23














up vote
2
down vote

favorite
2












I am proving the following identity for the laplacian of a vector $vecv=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2+frac1rfracpartial v_rpartial r-frac2r^2fracpartial v_thetapartial theta -fracv_rr^2right )vece_r \ + left (fracpartial^2 v_thetapartial r^2+frac1r^2fracpartial^2 v_thetapartial theta^2+fracpartial^2 v_thetapartial z^2+frac1rfracpartial v_thetapartial r+frac2r^2fracpartial v_rpartial theta-fracv_thetar^2 right )vece_theta \ left( fracpartial^2 v_zpartial r^2+frac1r^2fracpartial^2 v_zpartial theta^2+frac1rfracpartial v_zpartial r+fracpartial^2 v_zpartial z^2 right)vece_z$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 $$. So to prove the desired identity, $$nabla^2 vecv=left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r+v_theta vece_theta+v_zvece_z) \
= left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_thetavece_theta)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_zvece_z)$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1rfracpartial v_rpartial r+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2-fracv_rr^2 right)vece_r \
+left( fracpartial^2 v_thetapartial r^2+frac1rfracpartial v_thetapartial r+frac1r^2fracpartial^2 v_thetapartial theta^2-fracv_thetar^2+fracpartial^2 v_thetapartial z^2 right)vece_theta \
left( fracpartial^2 v_zpartial r^2+frac1rfracpartial v_zpartial r+frac1r^2fracpartial^2 v_zpartial theta^2+fracpartial^2 v_zpartial z^2 right)vece_z$$ which is not the same with the identity. I am confused how the $-frac2r^2fracpartial v_thetapartial theta$ and $frac2r^2fracpartial v_rpartial theta$ appeared in the $vece_r$ and $vece_theta$ components, respectively. Where did I go wrong? Need help...thanks







share|cite|improve this question
















  • 2




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23












up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2





I am proving the following identity for the laplacian of a vector $vecv=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2+frac1rfracpartial v_rpartial r-frac2r^2fracpartial v_thetapartial theta -fracv_rr^2right )vece_r \ + left (fracpartial^2 v_thetapartial r^2+frac1r^2fracpartial^2 v_thetapartial theta^2+fracpartial^2 v_thetapartial z^2+frac1rfracpartial v_thetapartial r+frac2r^2fracpartial v_rpartial theta-fracv_thetar^2 right )vece_theta \ left( fracpartial^2 v_zpartial r^2+frac1r^2fracpartial^2 v_zpartial theta^2+frac1rfracpartial v_zpartial r+fracpartial^2 v_zpartial z^2 right)vece_z$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 $$. So to prove the desired identity, $$nabla^2 vecv=left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r+v_theta vece_theta+v_zvece_z) \
= left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_thetavece_theta)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_zvece_z)$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1rfracpartial v_rpartial r+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2-fracv_rr^2 right)vece_r \
+left( fracpartial^2 v_thetapartial r^2+frac1rfracpartial v_thetapartial r+frac1r^2fracpartial^2 v_thetapartial theta^2-fracv_thetar^2+fracpartial^2 v_thetapartial z^2 right)vece_theta \
left( fracpartial^2 v_zpartial r^2+frac1rfracpartial v_zpartial r+frac1r^2fracpartial^2 v_zpartial theta^2+fracpartial^2 v_zpartial z^2 right)vece_z$$ which is not the same with the identity. I am confused how the $-frac2r^2fracpartial v_thetapartial theta$ and $frac2r^2fracpartial v_rpartial theta$ appeared in the $vece_r$ and $vece_theta$ components, respectively. Where did I go wrong? Need help...thanks







share|cite|improve this question












I am proving the following identity for the laplacian of a vector $vecv=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2+frac1rfracpartial v_rpartial r-frac2r^2fracpartial v_thetapartial theta -fracv_rr^2right )vece_r \ + left (fracpartial^2 v_thetapartial r^2+frac1r^2fracpartial^2 v_thetapartial theta^2+fracpartial^2 v_thetapartial z^2+frac1rfracpartial v_thetapartial r+frac2r^2fracpartial v_rpartial theta-fracv_thetar^2 right )vece_theta \ left( fracpartial^2 v_zpartial r^2+frac1r^2fracpartial^2 v_zpartial theta^2+frac1rfracpartial v_zpartial r+fracpartial^2 v_zpartial z^2 right)vece_z$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 $$. So to prove the desired identity, $$nabla^2 vecv=left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r+v_theta vece_theta+v_zvece_z) \
= left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_rvece_r)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_thetavece_theta)+ left(fracpartial^2partial r^2+frac1rfracpartialpartial r+frac1r^2fracpartial^2partial theta^2+fracpartial^2z^2 right)(v_zvece_z)$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vecv=left( fracpartial^2 v_rpartial r^2+frac1rfracpartial v_rpartial r+frac1r^2fracpartial^2 v_rpartial theta^2+fracpartial^2 v_rpartial z^2-fracv_rr^2 right)vece_r \
+left( fracpartial^2 v_thetapartial r^2+frac1rfracpartial v_thetapartial r+frac1r^2fracpartial^2 v_thetapartial theta^2-fracv_thetar^2+fracpartial^2 v_thetapartial z^2 right)vece_theta \
left( fracpartial^2 v_zpartial r^2+frac1rfracpartial v_zpartial r+frac1r^2fracpartial^2 v_zpartial theta^2+fracpartial^2 v_zpartial z^2 right)vece_z$$ which is not the same with the identity. I am confused how the $-frac2r^2fracpartial v_thetapartial theta$ and $frac2r^2fracpartial v_rpartial theta$ appeared in the $vece_r$ and $vece_theta$ components, respectively. Where did I go wrong? Need help...thanks









share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 24 '15 at 18:41









james25

7818




7818







  • 2




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23












  • 2




    The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
    – Giuseppe Negro
    Oct 5 '15 at 16:23







2




2




The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
– Giuseppe Negro
Oct 5 '15 at 16:23




The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
– Giuseppe Negro
Oct 5 '15 at 16:23










1 Answer
1






active

oldest

votes

















up vote
0
down vote













The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






    share|cite|improve this answer


























      up vote
      0
      down vote













      The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






      share|cite|improve this answer
























        up vote
        0
        down vote










        up vote
        0
        down vote









        The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.






        share|cite|improve this answer














        The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 11 '17 at 16:53









        TheSimpliFire

        9,79461952




        9,79461952










        answered Nov 11 '17 at 16:17









        katiousa

        1




        1






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?